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Abstract: Starting with the Atmospheric Infrared Sounder (AIRS) in 2002 and How We Know that Global Warming is Accelerating
continuing with the Cross-track Infrared Sounders (CrlS) on S-NPP and the JPSS Motivation: and that the Goal of the Paris Agreement is Dead
satellites, we now have 22 years of measurements of top-of-atmosphere infrared 10 November 2023
spectral radiance from the 1330 orbit. This poster summarizes recent, preliminary
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The drive for global temperature change is Earth’s energy imbalance (EEI), the
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 For each day, select near nadir observations (AIRS cross-track scan indices 43 to 48, CrlS cross-track
FORs 15 and 16)

e Compute the Integrated Nadir Longwave Radiance (INLR) (i.e. the sum of all channel radiances) for
each spectrum

 Compute and store statistics of the INLR values on a 3x3 degree lat/lon grid

e Compute 16 day averages

* Compute Global averaged INLR (combining all Longitudes, cosine weighting by Latitude)

* Apply empirically determined static adjustment factors (scale and offset to global INLR values) to
account for differences due to (1) NSR vs FSR CrlS spectral resolution, (2) AIRS vs CrlS spectral
resolution and coverage, and (3) AIRS vs SNPP CrlS vs JPSS-1 CrlS calibration differences.

« Combine Global INLR values into one time series (AIRS from 9/6/2002 to 12/31/2012, SNPP CrIS from
1/1/2013 to 12/31/2019, and JPSS-1 CrIS from 1/1/2019 to 8/11/2024)

* Apply an empirical multiplicative factor to convert from INLR to W/m?, and then convert to total
(spectrally) OLR using a regression based on a large ensemble of spectral Flux calculations.

Fig. 6. Global emitted thermal radiation (W/m®) relative to mean of the first 120 months of
CERES data. CERES data are available at https://ceres.larc.nasa.gov/data/

> Estimate OLR from the hyperspectral data while preserving its well

characterized and low radiometric uncertainty, stability. E.g. ....
S-NPP JPSS-1/NOAA-21
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VIIRS = CrlS (mK)
VIIRS - CrlS (mK)

o 105 Trend: 2 mK/decade

Using the temperature to flux relationship, the fractional uncertainty in flux is (6F/F) = T/4 dT.

CrlS stability of 10 and 30 mK/decade corresponds to OLR trend uncertainties of ~0.04 and

Data used INLR to OLR conversion based on large ensemble of Flux calcs ~0.12 W/m2/decade.
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> Very good agreement in anomalies/trends measured by CrIS/AIRS and by CERES
Yearly patterns of Global OLR with 2023 and 2024 highlighted > Global INLR from CrIS/AIRS shows very similar anomalies as CERES OLR ... INLR as a climate variable
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