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1. INTRODUCTION

In this work, a Machine Learning/Artificial Intelligence algorithm is presented for I1ASI-MetOp (as a proxy for MTG-IRS) to characterize its capabilities in providing information of the
atmospheric temperature, humidity and instability profiles. However, the hyperspectral infrared sounders on board satellites have significant limitations in deriving high-
quality atmospheric profiles. This is because retrievals lose accuracy in the lower layers of the atmosphere, where it is most critical for instability indices (e.g. CAPE). In this

work, a solution is provided by adding ground-based data to complement the Infrared Sounder profiles. The aim is to provide a real-time operational non-linear regression
method, the NWC SAF sSHAI product, to help forecasters monitor and analyze the atmosphere and the possible occurrence of severe phenomena such as severe convection.

2. METHODOLOGY

sSHAI product: Provide atmospheric vertical profile retrievals (temperature and humidity) (based on Machine Learning) and derived stability indices.
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The ML model used in this work is a Kernel Ridge Regression (KRR) model based on a Radial Basis Function kernel, that is a Gaussian Kernel defined as: K = exp( ——

The data inputs (X) are built with IASI data: Radiances, Vertical Solar/Satellite Zenith Angle, Latitude and Surface Pressure from each pixel.

While, the training dependent variable (Y) are built with ECMWF analysis: Temperature (T) and Water Vapour (Td) profiles at 90 pressure levels, Surface Air Temperature (SAT), Skin Temperature (SKT) and Surface
Dew point Temperature (STd).

The retrieved atmospheric variables are: T and Td vertical profiles at 90 pressure levels, SAT and STd at 2m from the surface and SKT at surface level.

4 N

NORMALIZATION TRAINING TESTING

e XandyY * KRR algorithm with SVs * Retrievals of
e PCA from X selection from X and Y atmospheric variables

(data from 2 days before) from IAS| data
| >

TRAINING DATA

e X =IAS| data VALIDATION

 Comparison with
ECMWEF analysis

 Y=ECMWEF analysis
(data from 2 previous days)

3. NWC SAF sSHAI RESULTS

To test IASI machine learning retrievals, several characteristic cases have been selected. These days were suitable days for hyperspectral sounders with clear skies in the morning and some of them with stationary
synoptic conditions throughout the day. Convection was triggered in the afternoon. Two classes of retrievals have been tested using IASI-MetOp data in scenes with a cloud fraction up to until 80%: 1) Retrievals
using just IASI data as input and 2) Retrievals using IASI data and ECMWEF forecast as input.

3.1 Case 1: 15 July 2015 over Spain 3.1.1 Comparison between ECMWF forecast & IASI retrievals vs Surface Stations s:uon ocation
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In AEMET, Surface Station Water Vapour (WV) data consists of the average of
only the ninth minute every ten minutes - Cannot do proper averages of an
stochastic variable

We average several previous hours of WV measurements to achieve an average
similar to IASI or ECMWEF resolution.
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Retrievals lose accuracy in the lower layers of the atmosphere, where it is most extension or ECMWF resolution.

critical for instability indices (e.g. CAPE). In this test, we have added humidity
ground-based data to complement the Infrared Sounder profiles.
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3.2 Case 2: 5 June 2024 over Hungary

During 5 June 2024 several storms hit Hungary due to atmospheric instability
developed during mid-day.

In Hungary, Surface Station WV data consists of the average of the previous ten minutes
every ten minutes - Better proper averages of an stochastic variable than in Spain.

Averaged several hours of WV o
measurements to achieve a similar
resolution to IASI or ECMWEF. Very low Bias
and Std Deviation between ECMWEF forecast
and IASI retrievals vs surface stations.
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Locating the mid-day triggered convection on 5 june 2024 in Hungary:
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4. CONCLUSIONS

The results of the application of the Machine Learning KRR model to the IASI-MetOp data (as a
proxy for MTG-IRS) indicate a high improvement of the meteorological analyses for the analysed
weather scenarios. Complementing IASI hyperspectral retrievals with ground-based data seems to
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provide a powerful nowcasting tool for forecasters. A closer time monitoring will be available in
the future with MTG-IRS data.




