

Evaluating Spectral Biases in IASI and FORUM Clear-Sky Simulations using RTTOV

Viviana Volonnino¹, Jean-Marie Lalande¹, Raymond Armante², Virginie Capelle², Jérôme Vidot¹

¹CNRM, Université de Toulouse, Météo-France, CNRS ²LMD/IPSL, École Polytechnique/Sorbonne Université/CNRS

PhD Objectives

• Characterize simulation biases and attribute differences to spectroscopy, atmospheric profiles or parametrization

* Comparison with other RT models to assess various spectroscopic databases (HITRAN, GEISA)

• Interpret spectral level sensitivity using Jacobians for few selected channels

• Examine the modelling in RTTOV

* Look into the parametrization of OD and coefficients generation process

• Implications of spectroscopy in Data Assimilation

* Inversion Algorithm 1D Var for Temperature and Water Vapor profiles

* Test different sets of coefficients in Data Assimilation Experiments

Radiative Transfer Models

RTTOV v13 LBLRT

LBLRTM v12.8

Database of atmospheric profiles colocated with IASI observations: ARSA v2

• Radiosounding: $P(z), T(z), H_2O(z)$ interpolated on ERA-5 grid (note the

Model type	Fast Band model [†]	Line-By-Line
Spectral Range	UV to Submillimeter	$[0 - 30000] \ cm^{-1}$
# Molecules	28 (7 variables)	43
Spectroscopic DB	HITRAN 2012	HITRAN 2012
Water Vapor	MT CKD (3.2)	MT CKD (3.2)
Jacobians	\checkmark	\checkmark
Main Purpose	Data Assimilation in NWPs	Reference Simulations

† Parametric model of convoluted transmittances (#120 instruments)

warm bias introduced by ERA-5 around 1-2 hPa)

- ERA-5: $O_3(z), T_{surf}$
- CAMS: $CO_2(z)$, $CH_4(z)$
- Conditions: Night (avoid non-LTE effect) / Ocean / Clear-sky
- **19706 IASI** observations (Fourier Transform Spectrometer) colocated with 43 levels profiles
- Dataset spans all four seasons of **2017** and profiles are sorted per airmass class (TIGR2000 classification)

Intercomparison RTTOV vs LBLRTM vs IASI observations

The figures on the bottom left shows IASI observations vs simulated spectra from RTTOV and LBLRTM. Potential sources of bias may come from the spectroscopic database, numerical scheme of the RT model, transmittance parametrization (in

case of RTTOV), or the atmospheric profiles.

1^{st} band [645-1210 cm^{-1}]

- \sim 667 cm⁻¹ (CO₂ bending mode): affected by temperature biases in ERA-5 (see figure in the top right panel)
- → 700-750 cm^{-1} : likely related to CO₂ concentration profiles errors → 1010-1080 cm^{-1} : O₃ spectroscopy and ERA-5 ozone profiles
- 2^{nd} band [1210-2000 cm^{-1}]
- $\rightsquigarrow 1305~cm^{-1}:$ associated with $\rm CH_4$ concentration profiles
- \rightsquigarrow Broad bias: Due to H₂O continuum absorption and ERA-5 overestimation of water vapour

- The central figure provides a deeper look into bias sources using Jacobians and weighting functions from three CO_2 IASI channels: 667.75 cm^{-1} , 716 cm^{-1} and 2336.5 cm^{-1} .
- Weighting functions determine the atmospheric level contributing most to the observed radiance
- Jacobians are computed to study the level sensitivity of radiances to temperature and gas concentration

The LBLRTM–RTTOV results highlight total model bias and isolates RTTOV's parametrization and modelling error.

While observation biases tend to follow mostly a Gaussian distribution, model-to-model differences vary significantly across spectral regions and atmospheric conditions.

$\mathbf{3}^{rd}$ band [2000-2760 cm^{-1}]

 \rightarrow 2080–2200 cm^{-1} : CO spectroscopy and concentration profiles errors \rightarrow 2230–2390 cm^{-1} & 2200 cm^{-1} : influenced by CO₂ and N₂O features \rightarrow 2590–2760 cm^{-1} : HDO spectroscopy likely responsible

Intercomparison RTTOV vs LBLRTM: FORUM

The bottom figure illustrates the radiance bias between RTTOV and LBLRTM simulations across the FORUM spectrum, evaluated against the **NESR (Noise-Equivalent Spectral Radiance)** goal. Regions where the bias exceeds the NESR indicate potential limitations in RTTOV's spectroscopic modelling or radiative transfer assumptions, particularly in the far-infrared.

On the top-right the same bias in BT is shown profile by profile (IREMIS emissivity model), while the bottom-right figure displays the values obtained using a constant emissivity of 0.98.

 \rightarrow RTTOV tends to be colder in absorption bands and warmer in the windows, indicating an **overestimation of gas absorption** \rightarrow When $\epsilon = 0.98$ the RT model considers less atmospheric contribution ($R = 1 - \epsilon$)

- \Rightarrow RTTOV BT are warmer in the atmospheric window (800-1000 cm^{-1}) due to less absorption from water vapour
- \Rightarrow The decrease of the bias the close FIR (400-600 cm^{-1}) for profiles with low TPW suggests a smaller **RTTOV error for reflected radiation** (1ϵ) .

Next Steps and Outlook

Analyse the coefficient generation process and its role in the absorption features of main gases
Strengthen the link between spectroscopic uncertainty and RTTOV modelling performance
Improve RTTOV's FIR simulation capability

• Generate new coefficient sets based on updated spectroscopic data (e.g. HITRAN 2020)

