A diverse atmospheric dataset of 100,000 profiles from CAMS short range forecasts

Emma Turner (emma.turner@ecmwf.int), Angela Benedetti, Oakley Young* Research Department, ECMWF, Reading, United Kingdom, *Met Office, Exeter, United Kingdom

Selection Algorithm

Most (90%) of the profiles are selected randomly to preserve the statistical qualities of the original model. 10% (both steps) of the remaining profiles are selected via the algorithm shown below, such that inter-profile differences are maximised following Eresmaa and McNally (2014).

Step 1

For 12 months (March 2024 - February 2025): For 3 days $(1^{st}, 10^{th}, 20^{th})$: For 4 forecast steps (36, 42, 48, 56): 1350 of 348,528 profiles selected at random 150 of 347,178 profiles selected via a tunable threshold

CAMS and the IFS

		CAMS AC	IFS
	Horizontal resolution	T511/N256 (~40 km) 348,528 pixels	T1279/O1280 (~9 km) 6,599,680 pixels
	Vertical resolution	137 levels (~80 km) 1013.25 - 0.01 hPa	
	Forecasts	0000/1200 to 5 days	0000/1200 to 15 days 0600/1800 to 6 days
	Cycle	Cy49r1 (12 th November 2024) Cy48r1 (27 th June 2023)	

Figure 1. Schematic of the differences between two temperature profiles (s_i and s_j) at each level. Each difference is divided by the level standard deviation, the quantity is then squared and summed over every level to give D, a measure of the inter-profile difference.

Number of levels Variable in bin k from profile i on level l 5 1700 $\left(\theta_{ik}(l)-\theta_{jk}(l)\right)^{2}$ $D(s_i, s_j) =$ $\sigma_k(l)$ l=12024-03 2024-05 2024-07 2024-09 2024-11 2025-01 2025-03 Forecast datetime Standard deviation of variable k on level k=1 $D(s_i, s_i) > threshold \ \forall s_i \in S_0 \longrightarrow Set of output profiles$

Step 2

4500 of ~216,000 profiles selected at random 500 of ~211,500 profiles selected by tuning a threshold

Figure 2. Number of profiles selected at each time step using a threshold of 0.28 in step 1 of the selection algorithm randomly selected selection algorithm —— CAMS-L137 2025 **---** IFS-L137 2025 IFS-L137 2014 MACC-L60 2012 CAMS-L60 2016

20 variables

Long name	Short name	bins
Temperature	temp	1
Specific humidity	hum	1
Ozone	oz	1
Cloud condensate	clw, ciw	2
Precipitation	rain, snow	2
Carbon dioxide	co2	1
Methane	ch4	1
Nitrous oxide	n2o	1
Carbon monoxide	со	1
Nitrogen dioxide	no2	1
Sulphur dioxide	so2	1
Formaldehyde	ch2o	1
Sea salt aerosol	salt1, salt2, salt3	3
Desert dust aerosol	dust1, dust2, dust3	3
Sulphate aerosol	sulphate	1
Organic matter	hphil_om, hphob_om	2
Black carbon	hphil_bc, hphob_bc	2
Ammonium	ammonium	1
Nitrate aerosol	nitrate1, nitrate2	2
Secondary organic matter	bio_om, anthr_om	2

280 300

 10^{-23} 10^{-20} 10^{-17} 10^{-14} 10^{-11} 10^{-8} 10-Sulphate mass mixing ratio [kg/kg]

 10^{-26}

Black carbon mass mixing ratio [kg/kg]

 10^{-26}

 10^{-23}

MACC-L60 2012: dus MACC: dust 2 MACC: dust 3 10^{0}

----- salt 1: 0.03 - 0.5 μm

• salt 3: 5 - 20 μm all profiles: salt 1 all profiles: salt 2

all profiles: salt 3

MACC-L60 2012: salt MACC: salt 2

... **– –** · salt 2: 0.5 - 5 μm

MACC: salt 3

 Hydrometeor variables are affected by the lower resolution of CAMS with respect to the IFS.

 10^{-20} 10^{-17} 10^{-14} 10^{-11}

 10^{-8}

• Cy49r1 comprises $\sim \frac{1}{4}$ of the profiles and has a significant effect on aerosols and SO_2 , particularly at upper levels.

References

Eresmaa, R., and A. McNally, (2016): Diverse profile datasets based on the CAMS atmospheric composition forecasting system. NWP SAF Report, 11 p.

Cy49r1. Many

Eresmaa, R., and A. McNally, (2014): Diverse profile datasets from the ECMWF 137-level shortrange forecasts. NWP SAF Report No. NWPSAF-EC-TR-017, 12 p.

Eresmaa, R., A. Benedetti, and A. McNally, (2012): Diverse profile database of aerosol and trace gas concentrations from the Monitoring Atmospheric Composition and Climate short-range forecasts. NWP SAF Report No. NWPSAF-EC-TR-015, 12 p.