13p.07

Recent upgrades and progress o satellite radiance data assimilation

MURATA Hidehiko, HAYASHI Masahiro, AKIMOTO Ginga, TOYOKAWA Masak<mark>azu, TOMA Tsuguyoshi, URAT</mark>A NISHIZAWA Keisuke and SHIMIZU Hiroyuki, Numerical Prediction Division, Japan Meteorological Agency (JMA)

1. Outline of NWP systems at JMA

Specifications of JMA's deterministic forecast models and data assimilation systems. Details are available on the https://www.jma.go.jp/jma/jma-eng/jma-center/nwp/nwp-top.htm Contact: hidehiko.murata[at]met.kishou.go.jp

Satellite data used in the operational assimilation systems. (as of May 2025)

	Global Spectral Model	Meso-scale Model	Local Forecast Model	Туре	Satellite/Instrument	Global Analysis	Meso-scale Analysis	Local Analysis
Model	& Analysis (GSM, GA)	& Analysis (MSM, MA)	& Analysis (LFM, LA)	MW Sounder	NOAA-15,18,19, Metop-B,-C/AMSU-A	Radiance	Radiance	Radiance
					NOAA-19,Metop-B,-C/MHS	Radiance	Radiance	Radiance
Horizontal res.	TQ959 (~13 km)	5 km	2 km		DMSP-F17,18/SSMIS	Radiance	-	-
					Suomi-NPP, NOAA-20,21/ATMS	Radiance (T,H)	Radiance (H)	Radiance (H)
vertical lev. (top.)	L128 (0.01hPa)	L96 (37.5 km)	L76 (21.8 km)	IR Sounder	Metop-B,-C/IASI	Radiance (T,H)	Radiance (T,H)	Radiance (H)
					NOAA-20, <mark>21</mark> /CrIS	Radiance (T,H)	Radiance (T,H)	Radiance (H)
		78h (00 12 LITC)	106	MW Imager	DMSP-F17,18/SSMIS	Radiance	Radiance, Rain Rate	Radiance
Forecast range (Initial time)	5.5 days (06,18UTC) 11 days (00,12UTC)	39h (03,06,09,15,18,21	180 (00,03,06,09,12,15,18,21 UTC) 10h (1 hourly the others)		GCOM-W/AMSR2	Radiance	Radiance, Rain Rate	Radiance, Soil Moisture
		010)			GPM-core/GMI	Radiance	Radiance, Rain Rate	Radiance
Data Assimilation (inner loop horizontal res.)	4D-Var (TL319, ~55km) + LETKF Hybrid + outer-loop iteration	4D-Var (15 km)	Hybrid 3D-Var (5 km)	-	Himawari-9	CSR, AMV	CSR, AMV	CSR, AMV
					GOES-18	CSR, AMV	-	-
					Meteosat-9,10	CSR, AMV	-	-
Assimilation	6h (-3h ~ +3h)	3h (-3h30m ~ +30m)	1 hourly update cycle for	cycle for VIS/IR Imager	NOAA-15,18,19, Metop-B,-C/AVHRR	AMV	-	-
window		° 3h (-3h30m ~ +3			Suomi-NPP, NOAA-20/VIIRS	AMV		
RTM for Radiance	RTTOV 13.0	RTTO	RTTOV 13.0 (13.0 coefficients) Scatterometer		LEOGEO composite image	AMV	-	-
assimilation	(10.2 coefficients)	(13.0 coe			Metop-B,-C/ASCAT	OSWV	OSWV	OSWV Soil Moisture(-B)
Cut off time	Early Analysis: 2h20m Cycle Analysis: 11h50m (00, 12UTC), 7h50m (06, 18UTC)	50min	30min	Radio Occultation	Metop-B/GRAS	Bending Angle	Refractivity	-
					TerraSAR-X/IGOR	Bending Angle	Refractivity	-
					TanDEM-X/IGOR	-	Refractivity	-
				Radar	GPM/DPR	-	Relative Humidity	-
*) Red indicates up	dates in the operational s	ystem since ITSC-24.		*) Blue indicates all-sky assimilation. AMV: Atmospheric Motion Vector, OSWV: Ocean Surface Wind Vectors				

2. List of Upgrades

- Assimilation of GOES-18/CSR, AMV replacing GOES-17 (GA, May 2023)
- Resume use of Meteosat-10/CSR, AMV replacing Meteosat-11 (GA, May) 2023)
- Upgrade to the JMA's 11th generation supercomputer systems, including all NWP subsystems (Mar. 2024)
- Assimilation of NOAA-21/ATMS, CrIS (GA, MA and LA, Mar. 2024) ⇒ 2.1
- Upgrading the coefficients and sea surface emissivity models used in RTTOV-13.0 (MA and LA, Feb. 2025) **⇒ 2.2**
- Assimilation of window channels of AMSU-A and ATMS (23.8 and 31.4GHz) (MA and LA, Feb. 2025) **⇒ 2.3**

2.2 Upgrading the coefficients and sea surface emissivity models used in RTTOV-13.0

- The radiative transfer model used in the JMA's NWP systems (GA, MA and LA) was updated from RTTOV 10.2 to 13.0 in 2022. To ensure a reliable update, the first step was to make minimal changes so as not to change the data assimilation result too much. (Reported in ITSC-24, 1p.06)
- As the second step, RTTOV coefficients and sea surface emissivity models were updated (MA and LA) and are being updated (GA). The accuracy of the calculations was confirmed to have improved (except CrIS).
- With these changes, scan bias corrections (static bias correction at each FOV) for polar orbit satellites were updated. Parameters used for QC (e.g., obs. errors, thresholds) were validated and updated as necessary.
- The impact on forecast accuracy was not very significant, but the data assimilation systems for Tb are now more ideal than before.

2.3 Assimilation of window channels of AMSU-A and ATMS

AMSU-A and ATMS window channels

2.1 Assimilation of NOAA-21/ATMS, CrIS

- Data quality and observation error settings
- Observation errors are estimated based on statistics (standard deviation) of O-B (observation – first-guess).
- The standard deviations of O-B for each channel are similar to or smaller than Suomi-NPP and NOAA-20. The same observation errors and QC thresholds as for those satellites were applied.

Data coverage

- Overlapped observation data from three satellites are thinned to one of them.
- The number of data used increased about 10% (ATMS) and up to 35% (CrIS T-channels) with the addition of NOAA-21.

Impact on forecasts

- Data assimilation experiments showed that the addition of NOAA-21 to GA improved the first-guess (short-range forecast) accuracy resulting in the changes in the O-B standard deviation of AMSU-A. The lower channels are mainly attributable to ATMS, and the upper channels are to CrIS.
- GSM forecast accuracy improved mainly in T and Z, especially in the tropics. MSM and LFM forecast accuracies were almost neutral.

3.1 Additional use of CO₂ band of the geostationary satellites' CSR Weighting functions of Himawari-8/AHI Band10 (7.3µm) Band16 (13.3µm) Band 8 (6.2µm) Band 9 (6.9µm) CO₂ band CSR

Data coverage of ATMS in GA

Suomi-NPP, NOAA-20, NOAA-21

Window channels of AMSU-A and ATMS (23.8GHz and 31.4GHz) were previously used only for QCs. These are sensitive to humidity in the lower troposphere and similar to the microwave imager channels that have already been assimilated. These can complement and extend data coverage of the lower humidity observation.

Data assimilation settings

- Observation errors are estimated based on standard deviation of O-B. Observation error inflations are set equal to the corresponding microwave imager channels.
- In addition to the same QCs as the other temperature channels, a QC was applied to remove more strictly land/sea mixed FOVs due to the larger FOV of sounders.

Impact on forecasts

- Data assimilation experiments showed that the addition of window channels improved the first-guess accuracy in lower troposphere humidity resulting in the changes in the O-B standard deviation of microwave imagers.
- Forecast accuracy was also improved in weak precipitation up to 24 hours for MSM and in lower troposphere humidity in the tropics for GSM.

3. Future Plans

- Upgrading the coefficients and sea surface emissivity models used in RTTOV-13.0 in GA **⇒ 2.2**
- Assimilation of window channels of AMSU-A and ATMS in GA \Rightarrow 2.3
- Improvement of assimilation schemes for all-sky assimilation of microwave water vapor sounder in GA

Obs. errors for window channels [K]

AMSU-A	ch1	ch2		
Metop-C	2.80	2.40		
NOAA-15	3.00	2.60		
NOAA-18	2.80	2.40		
NOAA-19	2.80	2.40		
ATMS	ch1	ch2		
S-NPP	2.80	2.20		
NOAA-20	3.00	2.70		
NOAA-21	3.00	2.70		

- CSRs at WV bands have been widely used at NWP centers. In addition to the WV bands, the use of the CO₂ band has been developed (Okabe and Okamoto 2023).
- CO₂ band (13.3-13.4 µm) CSRs have information about temperature and WV in the middle and lower troposphere.
- Accurate LST is necessary for assimilating CO₂ band because it is sensitive to LST. Retrieval of LST enables the use of CO_2 band over land.

Impact on forecasts

- Data assimilation experiments were conducted using JMA's global data assimilation system of JMA (as of Mar. 2024). CO₂ band CSRs of Geostationary satellites (Himawari-8, GOES-16,18, Meteosat-9 and -10) were additionally used in the experiments. (August 2023 and January 2024)
- Mainly over continents in the summer hemisphere, the biases of lower air temperature and specific humidity improved in the analysis, then its forecasts improved as well

Retrieval of Land Surface Temperature (LST)

B: the Planck function, BT: brightness temperature, τ_t : the surface to space transmittance, ε_s : the surface emissivity, τ : transmittance at a certain height, T: atmospheric temperature, h: the Planck constant, k: the Boltzmann constant, v: frequency, c: the light speed.

- \Rightarrow See 9p.06 poster (by H. Shimizu)
- Assimilation of GOSAT-GW/AMSR3 in GA, MA and LA
- Assimilation of GOES-19 and Meteosat-12 in GA
- Additional use of CO_2 band of the geostationary satellites' CSR in GA \Rightarrow 3.1 and MA
- All-sky infrared radiance assimilation in GA
 - \Rightarrow See 10.03 oral (by I. Okabe) for geostationary satellite imagers
 - ⇒ See 10.04 oral (by K. Okamoto) for IASI
- Preparation for the assimilation of Himawari-10/GHMS \Rightarrow See 4p.05 poster (by T. Urata)
- <References>
- Okabe, I., & Okamoto, K. (2023). Assimilation of surface sensitive bands' clear sky radiance data using retrieved surface temperatures from geostationary satellites. Quarterly Journal of the Royal Meteorological Society, 149(753), 1473-1497.

Acknowledgements: We would like to express our sincere gratitude to ITWG for covering the accommodation expenses.

The 25th International TOVS Study Conference (ITSC-25), Goa, India, 8-14 May 2025