# Satellite Radiance Data Assimilation at KMA(Korea Meteorological Administration)

| <b>13</b> | <b>p.02</b> |
|-----------|-------------|
|-----------|-------------|

Korea Meteorological Administration **Numerical Modeling Center**  Eun-Hee KIM<sup>1</sup>, Yong Hee Lee<sup>1</sup>, Jeon-Ho Kang<sup>2</sup>, Hyeyoung Kim<sup>2</sup>, and Ahreum Lee<sup>2</sup> <sup>1</sup>KMA, <sup>2</sup>KIAPS

Hyoung-Wook Chun<sup>1</sup>, Na-Mi Lee<sup>1</sup>, Jiyoung Son<sup>1</sup>, Young-Jun Cho<sup>1</sup>, Chang-Hwan Kim<sup>1</sup>,



NWP: KIM(Korean Integrated Model) launched April 2020

- Spatial resolution: ne360np3 ~ 12km, Cubed sphere grid system
- Vertical resolution: 91 levels, up to 0.01 hPa
- ✓ DA: Hybrid-4DEnVar
  - Incremental analysis resolution: ne144np3 ~ 32km
  - 4 analyses per day with 6hour assimilation window
  - Background error covariance is combination (Static : Ensemble = 3:7)
  - Ensemble: **4D LETKF**, 50 members, ne144np3 ~ 32km
  - **KPOP**: KIM Package for Observation Processing Radiative transfer model: RTTOV v12.3

Observation KPOP

# **Current use of radiance instruments**

#### A – Assimilated at 4DEnVar

**E** – Under evaluation

Changes since ITSC-24 are highlighted through orange shading

| Satellite | <b>MW</b><br>Temperature<br>sounder | <b>MW</b><br>Humidity<br>sounder | MW<br>Imager | IR<br>broadband<br>sounder or<br>imager | IR<br>hyperspectral<br>sounder |
|-----------|-------------------------------------|----------------------------------|--------------|-----------------------------------------|--------------------------------|
| NOAA-15   | А                                   | Х                                |              |                                         |                                |
| NOAA-18   | А                                   | Х                                |              |                                         |                                |
| NOAA-19   | А                                   | А                                |              |                                         |                                |
| NOAA-20   | А                                   | А                                |              |                                         | А                              |
| NOAA-21   | E                                   | E                                |              |                                         | E                              |
|           | ٨                                   | Λ                                |              |                                         | Y                              |

X – Failed/withdrawn







J)

# MW sounders and imagers

Jan 2020

- ✓ Main changes [KIM3.9, May 2025]
  - Adding MWHS-2/FY-3D
  - ATMS ch8-15 over land
  - VarBC update

32.5

30

# IR sounders and imagers

- ✓ Main changes [KIM3.9, May 2025]
  - VarBC update
- ✓ Under developing
  - Assimilation of CSR from GOES  $\rightarrow$  2p.06 (Ahreum Lee)
  - Forecast impact of Simulated GeoHIS based on KIM-OSSE  $\rightarrow$  4.02 (Young-Jun Cho)

## ✓ Under developing

• ATMS using over land  $\rightarrow$  16p.01 (Hyeyoung Kim)

KMA/KIM, KMA/UM,

Jan 2021

• All-sky assimilation, MW using over sea ice, Bias correction stabilizing

# ✓ Impact of MW radiances on KIM forecasting

- MW radiances: AMSUA, MHS, ATMS, AMSR2, MWHS2 vs. denial experiment
- Verification period: 1–31 July, 2022
- Improvement rate of RMSE against ECMWF analysis [%]

|     |        | Globe |       |       | Globe North Hemisphere |      |      |       |       |      |      |      |       | Тгор   | ics     |       |        | South Hemisphere |       |       |       |       |       |      |      | North | Pole  |       |       |       | South Pole |       |       |       |       |       |      |
|-----|--------|-------|-------|-------|------------------------|------|------|-------|-------|------|------|------|-------|--------|---------|-------|--------|------------------|-------|-------|-------|-------|-------|------|------|-------|-------|-------|-------|-------|------------|-------|-------|-------|-------|-------|------|
|     |        | θ     | 24    | 48    | 72                     | 96   | 120  | θ     | 24    | 48   | 72   | 96   | 120   | θ      | 24      | 48    | 72     | 96               | 120   | θ     | 24    | 48    | 72    | 96   | 120  | θ     | 24    | 48    | 72    | 96    | 120        | θ     | 24    | 48    | 72    | 96    | 120  |
| Q   | 700hPa | 8.71  | 5.53  | 3.73  | 2.74                   | 2.05 | 1.50 | 5.13  | 2.74  | 1.36 | 1.27 | 0.78 | 0.11  | 10.85  | 7.13    | 4.98  | 3.42   | 2.52             | 2.10  | 10.17 | 6.36  | 5.22  | 4.36  | 3.96 | 3.18 | 3.47  | 1.23  | 0.79  | 0.24  | 0.65  | -0.83      | 6.44  | 4.59  | 4.26  | 3.79  | 3.69  | 3.70 |
| WS  | 250hPa | 5.10  | 4.92  | 4.79  | 3.96                   | 3.28 | 3.01 | 2.79  | 2.87  | 2.83 | 0.39 | 0.51 | 1.02  | 2.34   | 2.11    | 1.93  | 2.05   | 2.90             | 3.74  | 9.73  | 9.60  | 8.52  | 7.87  | 5.61 | 4.27 | 3.94  | 3.49  | 3.29  | -1.89 | -1.26 | -0.99      | 10.35 | 12.68 | 8.79  | 7.53  | 4.27  | 4.50 |
| WS  | 500hPa | 5.85  | 5.56  | 5.13  | 4.78                   | 3.65 | 2.74 | 3.23  | 2.44  | 1.93 | 1.04 | 0.95 | 0.57  | 4.59   | 3.41    | 2.95  | 2.63   | 2.86             | 2.53  | 8.32  | 8.28  | 7.31  | 6.77  | 4.81 | 3.62 | 2.52  | 2.54  | 1.86  | 0.03  | -0.35 | -1.26      | 6.86  | 6.52  | 6.38  | 5.38  | 4.38  | 2.84 |
| WS  | 850hPa | 2.76  | 3.17  | 3.45  | 3.30                   | 2.90 | 2.48 | 1.15  | 0.77  | 1.18 | 0.85 | 0.77 | 0.76  | 2.31   | 1.78    | 2.05  | 2.08   | 2.56             | 2.12  | 4.50  | 5.99  | 5.58  | 5.10  | 4.04 | 3.43 | 0.91  | 0.32  | 1.10  | 0.88  | 0.68  | -1.24      | 4.40  | 5.46  | 4.76  | 3.99  | 2.93  | 3.18 |
| GPH | 250hPa | 31.25 | 21.21 | 13.36 | 9.30                   | 6.05 | 4.16 | 14.33 | 13.26 | 8.78 | 4.79 | 1.53 | -1.06 | 24.91  | 28.19 2 | 25.12 | 17.86  | 13.02            | 9.67  | 43.83 | 23.14 | 13.73 | 10.85 | 7.90 | 6.48 | 15.70 | 11.26 | 6.65  | 0.91  | -2.73 | -4.75      | 41.18 | 24.93 | 15.27 | 11.85 | 10.03 | 9.49 |
| GPH | 500hPa | 22.71 | 18.66 | 12.92 | 10.05                  | 7.14 | 5.16 | 21.78 | 13.68 | 9.51 | 5.26 | 1.97 | -1.33 | 22.05  | 28.63 2 | 25.87 | 23.46  | 18.48            | 14.80 | 23.40 | 17.89 | 12.41 | 10.73 | 8.37 | 6.86 | 16.72 | 10.32 | 5.43  | 2.23  | -2.18 | -5.00      | 17.62 | 15.08 | 11.03 | 9.73  | 9.34  | 8.95 |
| GPH | 850hPa | 5.98  | 7.55  | 7.01  | 7.88                   | 6.26 | 4.93 | 2.50  | 0.18  | 0.16 | 0.85 | 0.45 | -1.07 | 5.30   | 3.09    | 3.05  | 8.22   | 4.48             | 6.63  | 7.63  | 11.96 | 9.94  | 9.97  | 8.08 | 6.59 | 3.57  | 2.20  | 1.54  | 1.72  | -1.73 | -5.48      | 4.40  | 12.05 | 9.04  | 9.52  | 9.03  | 9.04 |
| т   | 250hPa | 1.91  | 0.24  | 1.82  | 1.89                   | 1.84 | 1.69 | 3.32  | 1.81  | 1.62 | 0.25 | 0.10 | 0.75  | -14.50 | -16.53- | 13.27 | -12.42 | -10.04           | -8.26 | 7.61  | 7.15  | 7.64  | 7.10  | 5.63 | 3.97 | 5.97  | 4.68  | 3.12  | 0.89  | -0.65 | 0.09       | 9.60  | 10.60 | 8.39  | 6.04  | 5.24  | 4.39 |
| т   | 500hPa | 12.94 | 10.99 | 9.02  | 6.98                   | 4.91 | 3.59 | 2.44  | 6.36  | 6.08 | 4.43 | 1.99 | 0.27  | 18.39  | 15.35   | 13.29 | 10.99  | 8.51             | 7.57  | 15.61 | 10.80 | 8.60  | 7.03  | 5.52 | 4.53 | -3.44 | 2.25  | 3.20  | 1.26  | -1.41 | -2.77      | 9.89  | 10.89 | 7.85  | 6.85  | 6.28  | 5.25 |
| т   | 850hPa | 7.02  | 4.85  | 3.62  | 3.45                   | 3.03 | 2.83 | 2.56  | 2.45  | 1.47 | 1.46 | 0.50 | 0.04  | 10.78  | 7.36    | 5.46  | 4.18   | 3.76             | 3.82  | 6.57  | 4.28  | 3.75  | 4.35  | 4.29 | 4.22 | -3.58 | -1.49 | -0.40 | -0.66 | -1.93 | -3.44      | 4.89  | 4.66  | 5.18  | 5.63  | 4.85  | 6.24 |

JMA/GSM, NCEP/GFS, UKMO/UM, ECMWF/IFS

Jan 2023

Jan 2024

Jan 2025

Jan 202240nth

### • Difference of RMSE (Operation – MW denial)



- Diagnostics of CrIS preprocessing system  $\rightarrow$  9p.04 (Na-Mi Lee)
- Optimize thinning, blacklisting, bias correction, and observation error
- ✓ Impact of IR radiances on KIM forecasting
  - IR radiances: IASI, CrIS, CSR of geos (GK2A, MSG, Himawari) vs. denial experiment
  - Verification period: 1–31 July, 2022
  - Improvement rate of RMSE against ECMWF analysis [%]

|     | -      | Globe |       |      |      |      |      | North Hemisphere |       |      |      |       |       |       | Tropics |       |       |       |       |      |      | South Hemisphere |      |      |      |       |       |       | Pole  |       |       | South Pole |       |       |       |      |       |
|-----|--------|-------|-------|------|------|------|------|------------------|-------|------|------|-------|-------|-------|---------|-------|-------|-------|-------|------|------|------------------|------|------|------|-------|-------|-------|-------|-------|-------|------------|-------|-------|-------|------|-------|
|     |        | θ     | 24    | 48   | 72   | 96   | 120  | θ                | 24    | 48   | 72   | 96    | 120   | Ð     | 24      | 48    | 72    | 96    | 120   | Ð    | 24   | 48               | 72   | 96   | 120  | θ     | 24    | 48    | 72    | 96    | 120   | θ          | 24    | 48    | 72    | 96   | 120   |
| Q   | 700hPa | 1.19  | 1.06  | 1.22 | 1.10 | 0.68 | 0.53 | 1.32             | 1.17  | 1.11 | 0.93 | 0.22  | 0.33  | 1.08  | 1.06    | 1.44  | 1.41  | 1.10  | 0.66  | 1.14 | 0.71 | 0.64             | 0.53 | 0.71 | 0.67 | 2.44  | 1.32  | 1.33  | 0.52  | 0.30  | 1.15  | 0.43       | -0.58 | -0.14 | -0.23 | 1.97 | 1.38  |
| WS  | 250hPa | 0.80  | 1.11  | 0.67 | 0.99 | 0.91 | 0.71 | 1.34             | 1.37  | 0.90 | 0.13 | 0.91  | 0.81  | 0.39  | 0.72    | 0.49  | 0.82  | 0.40  | 0.26  | 0.74 | 1.31 | 0.61             | 1.89 | 1.15 | 0.82 | 2.19  | 2.39  | 0.89  | -0.95 | 0.22  | -1.87 | 0.48       | 0.00  | -0.11 | 1.86  | 0.84 | 1.25  |
| WS  | 500hPa | 1.40  | 0.75  | 0.54 | 0.90 | 1.28 | 1.25 | 1.74             | 1.22  | 0.80 | 0.22 | 0.94  | 1.02  | 1.19  | 0.62    | 0.84  | 0.98  | 0.93  | 0.28  | 1.32 | 0.56 | 0.32             | 1.18 | 1.51 | 1.53 | 1.68  | 1.79  | 0.70  | -0.03 | 1.12  | 0.45  | 0.73       | -0.73 | -0.51 | 0.93  | 1.43 | 1.41  |
| WS  | 850hPa | 0.40  | 0.44  | 0.61 | 0.74 | 1.12 | 0.88 | 0.51             | 0.28  | 0.79 | 0.55 | 0.93  | 1.25  | 0.30  | 0.12    | 0.68  | 0.77  | 0.63  | 0.51  | 0.38 | 0.81 | 0.46             | 0.85 | 1.35 | 0.81 | 0.30  | -0.09 | 0.72  | 0.19  | 2.12  | 0.90  | 0.53       | 0.22  | -0.64 | -0.16 | 0.67 | 0.91  |
| GPH | 250hPa | 3.95  | 2.52  | 1.40 | 2.30 | 2.16 | 1.86 | 2.94             | 2.83  | 1.30 | 1.19 | 0.90  | 0.23  | 3.16  | 4.17    | 3.14  | 1.52  | 1.46  | 1.88  | 5.40 | 1.59 | 1.33             | 3.07 | 2.92 | 2.64 | 9.71  | 4.58  | 1.05  | -1.07 | -1.64 | -2.67 | 9.92       | 1.33  | 0.71  | 1.92  | 2.42 | 2.37  |
| GPH | 500hPa | 3.26  | -0.50 | 0.07 | 2.03 | 2.18 | 1.89 | 0.62             | -0.51 | 0.39 | 0.88 | 1.37  | 1.65  | 2.95  | -2.81   | -3.54 | -2.67 | -2.63 | -1.00 | 4.74 | 0.05 | 0.41             | 2.70 | 2.66 | 2.06 | 2.49  | 1.20  | 0.36  | 0.42  | 0.40  | 0.25  | 6.66       | -0.08 | -0.14 | 1.71  | 2.36 | 1.83  |
| GPH | 850hPa | 0.83  | 0.13  | 0.87 | 2.21 | 1.77 | 1.92 | 2.59             | 0.14  | 0.99 | 1.02 | 2.20  | 3.11  | 0.61  | 0.43    | 2.29  | 3.10  | -0.11 | 0.93  | 0.15 | 0.00 | 0.65             | 2.60 | 1.82 | 1.65 | 3.65  | 0.07  | 0.45  | 1.22  | 3.17  | 2.75  | -0.23      | -0.74 | -0.67 | 1.13  | 1.76 | 1.70  |
| Т   | 250hPa | 0.81  | 0.94  | 1.20 | 1.29 | 1.38 | 1.06 | 1.75             | 1.18  | 0.81 | 0.17 | 0.21  | -0.16 | -1.59 | 0.56    | 2.21  | 2.54  | 3.64  | 3.53  | 1.27 | 0.99 | 1.14             | 1.96 | 1.90 | 1.61 | 3.71  | 2.59  | 0.89  | 0.07  | 0.53  | -0.27 | 2.02       | 0.01  | -0.21 | 0.37  | 1.19 | -1.18 |
| Т   | 500hPa | 2.00  | 0.80  | 0.32 | 1.06 | 0.99 | 1.00 | 3.98             | 1.43  | 0.54 | 0.87 | -0.14 | -0.80 | 1.91  | 0.07    | -0.13 | -0.19 | -0.42 | -0.15 | 0.19 | 0.79 | 0.42             | 1.57 | 1.77 | 1.92 | 8.02  | 2.93  | 0.94  | 0.15  | -1.06 | -3.02 | -1.59      | 0.13  | -1.09 | 0.71  | 1.33 | 0.60  |
| Т   | 850hPa | 1.09  | 0.83  | 0.57 | 0.65 | 0.66 | 1.03 | 0.35             | 0.69  | 0.40 | 0.47 | 0.16  | 0.91  | 2.18  | 1.30    | 1.13  | 0.59  | 0.23  | 0.61  | 0.73 | 0.56 | 0.33             | 0.84 | 1.16 | 1.27 | -0.58 | -0.14 | -0.15 | -0.20 | 0.07  | 0.49  | 0.62       | 0.31  | 0.19  | 0.49  | 0.87 | 0.98  |

### Difference of RMSE (Operation – IR denial)



The impact of MW on KIM forecasting is mostly positive except for 10~300 hPa temperature and geopotential height.

#### MW Issues

| # | Location              | Description                                                                                                      | Future work                       |
|---|-----------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| 1 | Tropics @ 300~100 hPa | Temperature performance degradation from the early to the late forecast period                                   | Bias correction                   |
| 2 | Arctic lower-level    | Temperature error gradually increases as the forecast progresses, leading to deterioration across all variables. | Expand MW data<br>usage in seaice |
| 3 | Overall @ 50 hPa      | Temperature and geopotential height after 3day forecast                                                          | Bias correction                   |

- The impact of IR on KIM forecasting is mostly less positive than that of MW.
- IR helps offset the negative impacts of MW, particularly by improving upper-level in the tropics

#### **IR** Issues

| # | Location        | Description                      | Future work                                                                                                          |
|---|-----------------|----------------------------------|----------------------------------------------------------------------------------------------------------------------|
| 1 | Overall         | The impact is weak               | Optimization needed: Thinning interval, Increase in the number of utilized channels, Reduction of observation errors |
| 2 | Model top level | Negative impact on all variables | Expand the use of upper-level sensitive channels (currently only used below 50 hPa)                                  |

Goa India

8 - 14 May 2025

Acknowledgments: This research is supported by "Development of Numerical Weather Prediction and Data Application Techniques (KMA2018-00721)" of

#### The 25<sup>th</sup> International TOV/S Study Conference (ITSC-25)