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Presenter Notes
Presentation Notes
Hello, everybody, I wish I was there with you in Goa for the ITSC, but I'm excited to talk about Graph Theoretic Observation Thinning for Satellite Radiances and acknowledge my colleagues Hui Christophersen and Chris Hartman.



Why don’t we use all of the available satellite data?

• Computational cost of pre-processing and QC
• Ensemble and variational solvers may take too long or even 

fail to converge
• Spatially correlated observation error

• A function of how close two similar obs are in space and 
time

• Properly accounting for spatially correlated error is an 
open research question for most data types

• If ignored, data are treated as if their errors are 
independent, degrading the analysis

• We need to select data that are far enough apart to be truly 
independent, free from correlated observation error

Satellite Data Usage

2

Presenter Notes
Presentation Notes
A question I'm sure we've all been asked if we do any kind of satellite data assimilation is, why don't we use it all? We're ready with an answer for that.
- There's the computational cost of pre-processing and quality control.
- It's possible that our solvers might take too long or even fail to converge if we give them too many obs, too many constraints to fit.
- But the main reason is that we're worried about spatially correlated observation error.
- That's generally a function of how close similar obs are in space and time. If we could properly account for it, we might not need to thin, but it's still an open research question for many data types.
- If we ignore spatially correlated error and treat the data as if their errors are independent, the analysis will be degraded.
- So, we need to select data that are far enough apart to be truly independent and free from correlated observation errors. This has been known for a long time, and many of the thinning approaches that people use attempt to do that.



How do operational/research centers select data?

• Choose a fixed, approximately equispaced grid on Earth’s surface
• Then, for each instrument at each gridpoint,
• Choose the single observation closest to that gridpoint

• Absent further constraints, the MEAN distance between 
observations is equal to the grid spacing; however,

• The MINIMUM distance is unconstrained, allowing correlated error
• Additional constraints enforcing a larger minimum distance 

between obs locations leave data gaps
• Averaging (a.k.a. superobbing) instead is not the answer; averaging 

treats data as independent, baking in any spatially correlated error
• The FUNDAMENTAL problem is that observation selection needs to 

happen in observation space, not on an arbitrary grid

Flaws in Current Practice
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How do operational centers currently select data?
- What many centers do, including ours, is choose a fixed, approximately equispaced grid on Earth's surface. Then for each instrument at each grid point,
- choose a single observation. Generally, we choose the one closest to the center of our grid box in order to, at least in a statistical sense, keep obs from getting too close to one another. Without any further constraints, this approach ensures that the mean distance between observations will be equal to the grid spacing; however,
- the minimum distance is not constrained at all. It's possible in two adjacent grid boxes, I only have one ob to choose in each grid box, and they happen to be close to each other. This method only looks at one box at a time, and chooses both of these, allowing spatially correlated error. Some centers try to mitigate this effect explicitly by enforcing the chosen ob to be close to the grid box center, but in this this case, in both of those boxes, no ob would be chosen at all. So, there's no really good answer in grid space; we either allow obs to be close together, perhaps much closer than we want, or we perforce  leave data gaps.
- I want to point out that averaging or superobbing is not the answer. If we just do unweighted averaging, that treats the data as if they're independent, and just bakes in the spatially correlated error, and we can never get rid of it. You could be sophisticated here, and consider neighborhoods of grid boxes, but that gets unwieldy quickly, especially if grid box resolution is not fixed.
- The fundamental problem is that the observation selection needs to happen in observation space, not on an arbitrary grid. And once you switch your thinking over to this space, a lot of things come naturally, and I'll show you what happens.



• Given a set of geometric shapes (e.g. circles on a 2D surface), find 
the maximum independent set (MIS), which consists of the largest 
number of those shapes that do not overlap any other shape

• The MIS problem can be posed as a graph with a node for each shape, 
and edges between shapes that overlap

• There are known but very slow methods to find the optimal solution, and 
approximate methods to find good solutions quickly

• The MIS problem maps directly onto data selection:
• Draw a circle at each observation location, with D reflecting the 

desired local observation density (smaller D => denser obs) – some 
circles will overlap

• Note that these circles are an abstraction, NOT the satellite footprint
• Choose the largest possible set of non-overlapping circles (i.e. solve 

the MIS)
• The result will be the (nearly) largest set of observations that obey local 

and global density constraints, and are never closer than the smallest 
chosen D

A Problem from Graph Theory
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This may look unrelated to data thinning at the moment, but I promise you it is related. In graph theory, there's a problem called the maximum independent set problem. Given a set of geometric shapes, say circles on a 2D surface, I want to find the maximum number of shapes I can retain with no overlap, no mutual intersection. And this problem can be posed as a graph, with each node representing one of the shapes. If two shapes overlap, then we assign an edge connecting the two corresponding nodes.
- It turns out this problem is pretty hard to solve exactly; however, there are good approximate methods that are quite fast, and give results close enough to optimal for our purpose.
- This problem maps directly onto the data selection problem in observation space.
- Think about each observation location, each lat-lon where you have a satellite observation, and assign a circle of diameter D. The diameter you choose will reflect your desired local observation density, smaller circles for larger density, and vice versa. So, if I want to choose some arbitrary density function, I can, and I can assign this circle to each ob based on its lat-lon, on underlying geography, or weather, anything I want, really.
- Note that this diameter is an abstraction related to the desired ob separation and density, and has nothing to do with a satellite footprint, although that satellite footprint could be a criterion for choosing the size of this abstract circle.
- After I do that, I want to keep the largest possible set of non-overlapping circles. Well, that's what solving the MIS problem on this graph will do.
- The result will be the nearly largest set of observations I can have that obey my chosen local and global density constraints and are never closer than the smallest D that I've chosen.



Visualizing graph theoretic abstraction for data selection

After legacy thinning on fine grid Final observations retained

New algorithm

Each ob is a node 
(coin), two obs that 
might be spatially 
correlated share an 
edge (overlap), 
algorithm removes 
overlapping nodes to 
find the maximum 
disjoint set of obs

Graph Thinning Visualization
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A more concrete analogy will show how the observation space data selection works. Suppose I have a pile of coins on a table. Think about the center of each coin as an observation location, and the diameter of the coin as the assigned diameter. Initially, there's lots of overlap. That's no good, spatially correlated error. Then I'll remove coins in some way, following some algorithm, and I'll end up with something that looks like this. So I want to fill the space, and not leave gaps, but not allow any coins to overlap. And solving the MIS problem naturally does this. I've really attacked two problems here. One is spatially correlated error. I've guaranteed a minimum distance between observations to mitigate that. The other thing is that I've made it really easy to choose any obs density function I like. It's not just like I have a grid, and then on part of the Earth, I refine to double the size of that grid, right? It's very awkward to change systems like that to be really arbitrary, especially if they're going to change with the flow of the day. But it turns out that in observation space with a graphical representation, it's extremely easy to do. Once you set up that problem, you build the graph and solve it, you've got your thinned set of data.
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Grid Thinning vs Graph Thinning

The gap is 
due to the 
parallel 
solve of 
subsets of 
data

SSMIS F18 20210715T1800Z

Presenter Notes
Presentation Notes
Okay, so what does it look like for real data? Here's a look at some satellite passes with SSMIS microwave data from F18. Focus on the red circles, which  resemble chain mail. What I did was at each observation location, I drew a circle with diameter equal to the legacy grid thinning that we do, choosing a single ob per 1.25 degrees box. And like I said, I've constrained the mean distance to be equal to the grid spacing, but I haven't constrained the minimum distance. So, some of these circles will overlap, and in fact, a lot of them will. And that indicates that I'm letting these observations in that are spatially correlated. Whereas if I do the graphical thinning, choosing a flat density function with the same diameter circles assigned,
- the result of the thinning looks like this.
You'll notice that none of these circles overlap, and that the swaths are full, with no gaps where another ob might fit. The eagle-eyed among you may dispute that if you saw the gap in the orange swath east of Tierra del Fuego.
- That is due to our MPI implementation that solves the thinning problem in discrete chunks, then adjusts the seams between the chunks less perfectly than if the entire orbit was solved at once, which might be time prohibitive in an operational system.



Experiments with SSMIS
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Control Graph_flat
Grid thinning for all radiances, 
~41K SSMIS profiles

Graph thinning for SSMIS only, 
~32K SSMIS profiles, 22% fewer

1 ob per 140km box per 30 
minutes

Prethin:1 ob per 33 km box per 30 
minutes

No diameter assigned; no 
graph thinning

D=140km for all SSMIS

• Control run with operational grid thinning, experiment with 
graph thinning (SSMIS only), flat thinning at grid thinning size

• NAVGEM cycling DA runs using all operational conventional 
and satellite data from June 29 – Oct 2, 2022

• N.B. grid pre-thinning enhances the speed of the graph thinning with little effect on the final 
result

Presenter Notes
Presentation Notes
On to real experiments with graph thinning in our global NWP system NAVGEM with hybrid 4DVar DA, which means we will thin in time as well as space (the 6-hour assimilation window is divided into 30-minute chunks).
- The control experiment used grid thinning for all satellite observations, choosing one ob per 140km box per instrument per 30 minutes. The experiment 'graph_flat' used flat graph thinning with a fixed diameter of 140km assigned to only obs from the SSMIS instrument aboard F16, F17, and F18; grid thinning for all other assimilated MW and IR radiances. After graph thinning, we end up with 22% fewer obs perforce, going from 41K obs to 32K obs for SSMIS. We performed another experiment where the thinning was not flat, but we'll have to skip that in the interest of time.



Verification Metrics
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• Satellite vs simulated obs from short forecasts (aka fit2obs)
• Time series of ratio (between experiments) of spatial standard 

deviation of obs minus background for each channel
• If the confidence interval (CI) contains the ratio 1.0, then the test 

cannot distinguish between the two experiments for that channel
• Fit2obs categorical scorecard (subjective)

• Attempt to put similar channels in categories, and evaluate the 
category as a function of fit2obs wins, losses, and ties (ratio CI 
contains 1.0)

• Still a work in progress; wlt_score is very conservative
• Forecast verification against independent ECMWF analyses)

• Each panel shows pressure vs forecast lead time for a given variable 
(row) and a given region (column) for an experiment vs the control 

• Colors indicate percent improvement or degradation w.r.t. ECMWF 
analyses; hashing indicates 95% statistical significance

Presenter Notes
Presentation Notes
We used fit2obs and a categorical scorecard based on fit2obs, as well as standard forecast verification against ECMWF analyses to evaluate the graph_flat experiment. The categorical scorecard is a work in progress, and I won't go into detail here.



Graph_flat vs Control
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NOAA20 ATMS

Water vapor

Stratospheric T

Tropospheric T

6 wins; 9 ties; 3 losses

METOPC AMSU-A

Water vapor

Stratospheric T

Tropospheric T

7 wins; 2 ties; 2 losses

Stratospheric T

Tropospheric T

Presenter Notes
Presentation Notes
Here are a few representative examples of fit2obs, as measured by NOAA20 ATMS and METOPC AMSU-A. Recall that blue bars are confidence intervals that lie completely to the left of the 1.0 line, and indicate statistically significant improvement of the experiment vs control; red lines lie completely to the right of 1.0 and show degradation; gray lines include 1.0, and are neutral. As for most of the MW obs, the lower stratospheric and mid to upper tropospheric are positive; higher stratosphere and lower troposphere are neutral. The MW water vapor channels, however, are neutral to negative (e.g. channels 18-22 of ATMS)



Water vapor

Graph_flat vs Control
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METOPC IASI

Temperature

6 wins; 61 ties; 1 loss

NOAA20 CrIS FSR

10 wins; 22 ties; 11 losses

Stratospheric T

Tropospheric T

Presenter Notes
Presentation Notes
In the IR there are some mixed signals as shown by these examples of METOPC IASI and NOAA20 CrIS FSR channels (AIRS channels looked similar in structure to the IASI results, with 17 wins in tropospheric and stratospheric temperature, no losses, and 56 neutral channels). Overall, if I look at all of the satellites, I would judge this to be a small but significant improvement.
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Graph_flat vs Control Stats
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Presenter Notes
Presentation Notes
The traditional forecast verification statistics vs ECMWF analyses tell a similar story. The experiment is basically neutral to improvement (green) everywhere, with no degradation (purple). Statistical significance is indicated by the hashing, and although there is not too much of it, it is all positive. To my mind, this was a pleasant surprise. The only change made was to the thinning of one satellite instrument, using 22% fewer obs than in the control run, and yet mild forecast improvement resulted in the full system.



• The new method sets an INVIOLATE MINIMUM distance between two 
similar observations, while simultaneously retaining the maximum 
number of observations obeying that constraint

• It works in observation space, independent of any grid, and dynamic in 
space and time

• The freedom to assign each observation its own radius given by a density 
function, where the users expertise is implemented to influence which obs 
will be more or less likely to be retained, with a myriad of potential 
applications

• The density function is arbitrary: it can depend on obs error, other 
metadata such as orbital parameters, surface type, flow of the day, etc.

• The maximum density is constrained by the minimum safe distance to 
mitigate spatially correlated error; minimum density is chosen by the user

• Even if the density function is constant, there is a significant benefit, 
because we are restricting the MINIMUM obs distance rather than the 
MEAN obs distance

Graph Thinning Advantages
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I want to quickly summarize the advantages of the graph thinning method.
- We've set an inviolate minimum distance between similar observations while retaining the most observations we can, obeying that constraint.
- It works in observation space, so it’s independent of any grid. This means that it can easily be dynamic in space and time.
- We have complete control of the global and local observation density we want. In our system, I have a Fortran module with a set of density functions I can call, and I can write new ones using whatever inputs I wish. So, there's a lot of research possibilities here, user expertise that can go into choosing this density function, where we think we might want more observations.
- For example, suppose we want the obs density to be greater around tropical cyclones, tracking the storm from cycle to cycle, that would be easy in observation space with the graph theory infrastructure; quite difficult with a grid-based thinning.
- Remember that the maximum density is constrained by the minimum safe distance between obs to mitigate spatially correlated error; the minimum density is chosen by you.
- Even applying a constant density function as we did here in the graph_flat experiment, the simplest thing we could do, we're restricting the minimum obs distance, and seeing benefit already. I haven't yet tested trying to make the obs closer; I expect I can make this thinning distance smaller, still respect correlated error, but get more obs in and more improvement.



• Apply the methodology to existing sensors of interest such as ATMS and 
CrIS FSR, and future sensors such as TROPICS, TEMPEST, and COWVR, 
starting with flat thinning in a NAVGEM context

• Expand the science by investigating application of novel density functions, 
for example targeting increased observation density near developing 
storms or hurricanes

• Investigate spatially correlated error with complete control over minimum 
distance between observations

• Anisotropic data thinning across frontal boundaries, geographic features
• Subset thinning for different channels at the same spatial location (e.g. 

greater density for moisture channels than temperature channels while 
retaining full channel profiles where possible)

• Weighted superobbing accounting for spatially correlated error may be 
more straightforward to address on a graph in observation space

Future Work
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First, we can easily extend graph thinning to sensors other than SSMIS.
- We can look at novel density functions, like what I talked about, increasing observation density near storms.
- We can investigate spatially correlated error with complete control over the minimum distance that prior studies generally lacked.
- Anisotropic data thinning is also straightforward to implement in this framework. Those abstract circles really represent something like the 0.2 contour of spatially error correlation, and we've just simplified that to be isotropic. A better approximation might be an ellipse. You could allow observations to be closer together across a frontal boundary, while still keeping them spread out along the front by orienting the long axis of the ellipse along the front. So that's another possibility. And once you build the graph, adding edges for intersecting ellipses, the solver is the same.
You can thin different channels of the same profiles differently, keeping e.g. a greater density of moisture channels than temperature channels, just by making a second pass of the solver with different diameters.
 There is a world of possibilities to explore.



Questions?
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Email me @
william.f.campbell54.civ@us.navy.mil

Dhanyavaad.

Presenter Notes
Presentation Notes
Please feel free to email me with any questions. Dhanyavaad, and have a great conference.
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