

Comprehensive Infrared forward-Inverse Analysis of the Ozone hole with IASI

Guido Masiello^a, Tiziano Maestri^b, Carmine Serio^a, Giuliano Liuzzi^a, Angela Cersosimo^a, Michele Martinazzo^b, Rocco Giosa^a, Lorenzo Cassini^{a,c}, Federico Donat^{a,b}, Pamela Pasquariello^a, Marco D'Emilio^a

- a. Dilng, Università degli studi della Basilicata, Potenza, Italy
- b. DIFA, Università di Bologna, Italy
- c. DICEA, University of Rome, Italy

Anknowledgements

- This work is supported by Italian Space Agency in the framework of the following project
 - FORUM-Scienza (contract n-2018-6-Q.0, consortium leaded by CNR-INO Florence),
 - Fit-FORUM (contract n. 2023-23-HH.0, CUP F33C23000240005, consortium leaded by DIFA, University of Bologna),
 - MC-FORUM (contract n. 2023-23-HH.0, CUP F93C2300046000, consortium leaded by IBE-CNR)

ozone hole

• 2021 and 2023 have been two years with the most spatially extensive, and deep ozone hole.

- Formation of Polar stratospheric clouds (PSCs) is the fundamental catalytic mechanism that accelerates ozone destruction
- PSC formation involves HNO₃ and H₂O initially in the gas phase, which condenses into the solid phase (giving rise to crystals of HNO₃-3H₂O or NAT) at T<195 K
- The phenomenon is continuously monitored by satellite instruments, (Ozone Monitoring Instrument, OMI, TROPOspheric Monitoring Instrument, TROPOMI)
- They need daylight
- They have no sensitivity to the thermodynamic conditions of UT/LS region, and they don't sense nitric acid and water in the gas phase.

Foreword

Data & Method

Outline

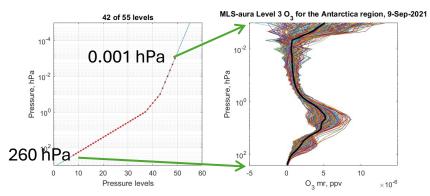
Results

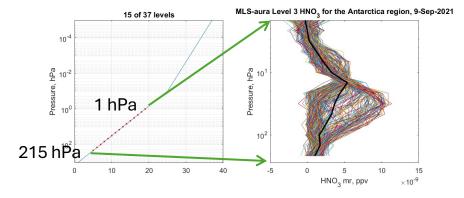
12/05/2025

Conclusions

	TROPOMI	OMI	IASI	MLS- AURA
Ozone	X	X	Χ	X
HNO3			Χ	X
Temperature			Χ	
Water Vapour			X	


The "Ingredients" of the Ozone Depletion


- We collect data for
 - the 9th of July, Sept and Oct 2021 and 2023
 - 90°<Lat<-60°



Microwave Limb Sounder (MLS) on NASA's EOS AURA Satellite

- Level 3 observations of the O3 and HNO3 profiles for MLS.
- https://disc.gsfc. nasa.gov/
- Sept. 9, 2021, and 2023.
- Level 3 data available on a 4°×5° longitude/latitude grid
- O3 pressure range: 260–0.001 hPa (42 of 55 levels)
- HNO3 pressure range: 215–1 hPa (15 of 37 levels)
- O3 profile -> Columnar Amount
- $\bar{X}_{O3} = \frac{N_A}{n_0 m_{oir}} \int_{p_l}^{p_u} q_{O_3}(p) dp$ [D.U.]
- HNO3 Profiles-> Columnar Amount
- $\bar{X}_{HNO3} = \frac{1}{p_l p_u} \int_{p_l}^{p_u} q_{HNO_3}(p) dp$ [PPV]

OMI and TROPOMI

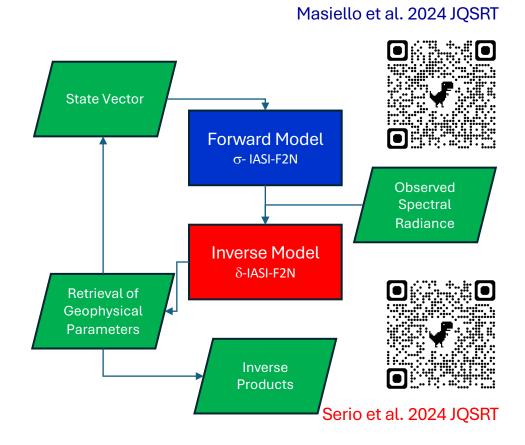
TROPOspheric Monitoring Instrument (TROPOMI)

Level 2 data (flag q < 0.75)

Ozone Measurements Instruments (OMI)

Level 3 gridded data

φ -IASI-F2N: forward/inverse package from the far to near infrared


 φ -IASI-F2N is a forward/inverse for all-sky (clear and cloudy conditions) calculations of forward (L1) and inverse (L2) products

The system includes

- *σ* IASI-F2N
- δ -IASI-F2N

To sum up

- φ stands for $\varphi u \sigma \iota \kappa \dot{\alpha}$ physical
- σ stands for wavenumber and for s Spectrum
- δ stands for increment

δ-IASI/F2N State Vector

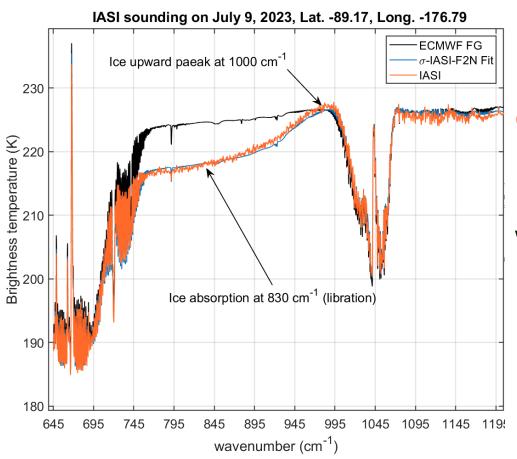
Atmosphere (profiles	s of size N _L =60)	Surface		
 Temperature (K) 	• CH ₄ (ppv)	Ts (scalar, K)		
 H₂O (g/kg) 	• SO ₂ (ppv)	 Emissivity spectrum, ε(σ) 		
HDO (ppv)	• NH ₃ (ppv)	Cloud parameters (profiles of size, N _L =60)		
• CO ₂ (ppv)	 HNO₃ (ppv) 	LWC (kg/kg)		
 O₃ (ppv) 	• CF ₄ (ppv)	IWC (kg/kg)		
• N ₂ O (ppv)	OCS (ppv)	• r _e (μm)		
• CO (ppv)		• <i>D_e</i> (μm)		
		Cloud fraction, cf (scalar)		

$$\mathbf{v} = \begin{pmatrix} \varepsilon(\sigma), cf, T_s, \mathbf{T}, \mathbf{Q}, \mathbf{O}, \mathbf{HDO}, \mathbf{q}_{CO_2}, \\ \mathbf{q}_{CH_4}, \mathbf{q}_{N_2O}, \mathbf{q}_{CO}, \mathbf{q}_{SO_2}, \mathbf{q}_{NHO_3}, \mathbf{q}_{HNO_3}, \mathbf{q}_{OCS}, \mathbf{q}_{CF_4}, \\ \mathbf{q}_{LWC}, \mathbf{q}_{IWC}, \mathbf{q}_{r_e}, \mathbf{q}_{D_e}, w \end{pmatrix}$$

International TOVS Study Conference 2025, Goa, India

Data & Method

Outline

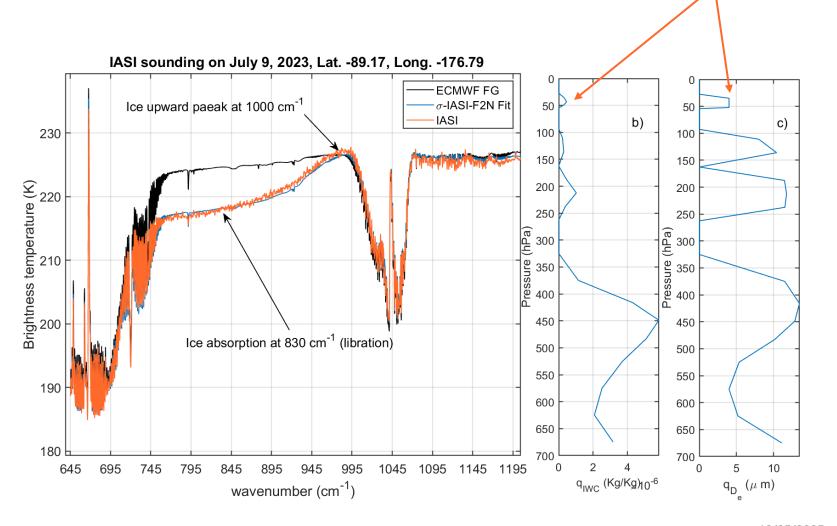

Results

12/05/2025

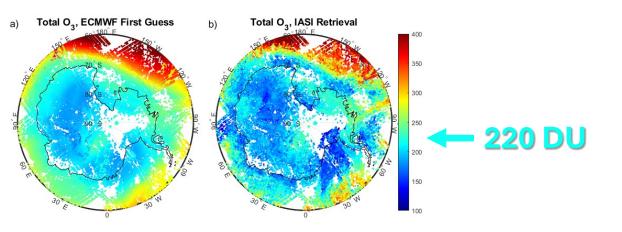
Conclusions

Retrieval of Polar Stratospheric Cloud

Orange – IASI Measurement

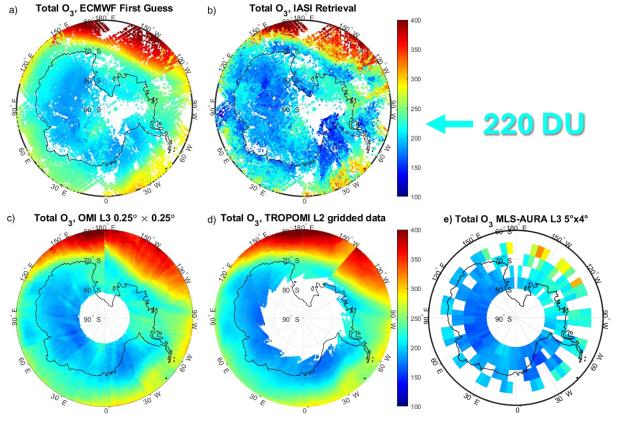

Black - Computed with ECWMF profile

Blue – Computed with IASI retrieved profile


Retrieval of Polar Stratospheric Cloud

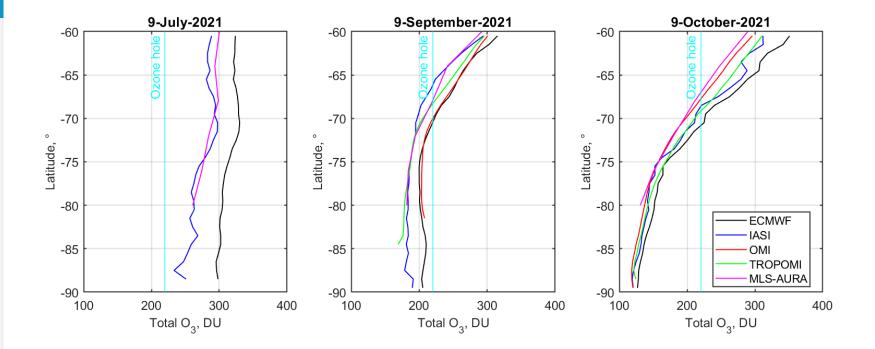
 $P = 43 \text{ hPa } (\sim 20 \text{ km})$ T(p) = 182 K $IWC = 4.5 \cdot 10^{-7} \text{ kg/kg}$ $D_e = 4 \text{ um}$

Retrieval of Ozone, 09/09/2021



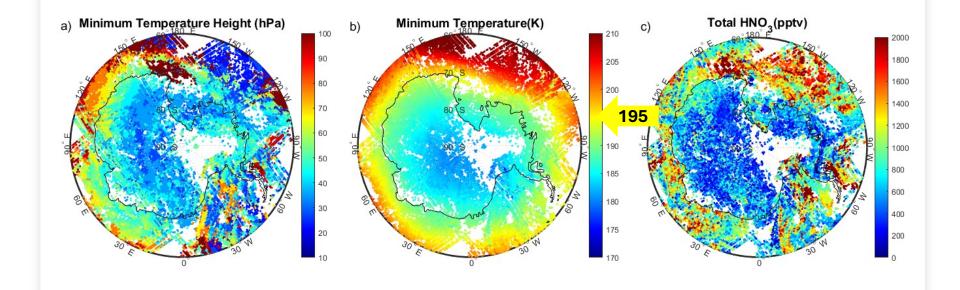
- a) O3 map from ECMWF (background),
- b) O3 map retrieved by IASI data (un-gridded level 2 product)

IASI see a deeper and wider Ozone hole with respect ECMWF

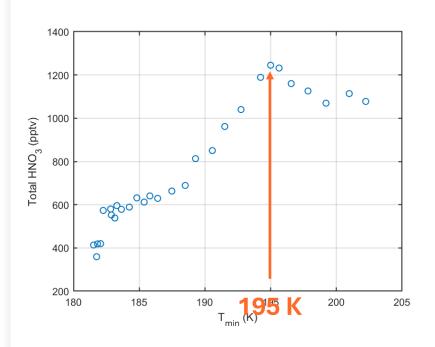


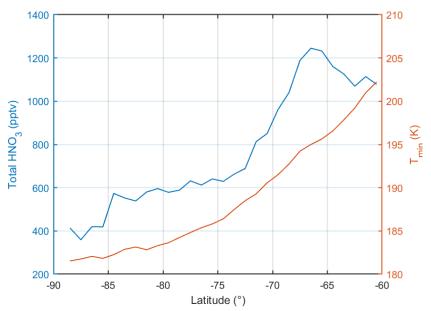
Retrieval of Ozone, 09/09/2021

- a) O3 map from ECMWF (background),
- b) O3 map retrieved by IASI data (un-gridded level 2 product)
- c) OMI level 3 gridded and smoothed product.
- d) TROPOMI level 2 gridded product, (QF>0.75)
- e) MLS-AURA level 3 gridded data
- IASI see a deeper and wider Ozone hole with respect ECMWF
- OMI and TROPOMI don't cover the pole (Night)
- MLS-AURA with a coarser spatial resolution captures the same features of IASI

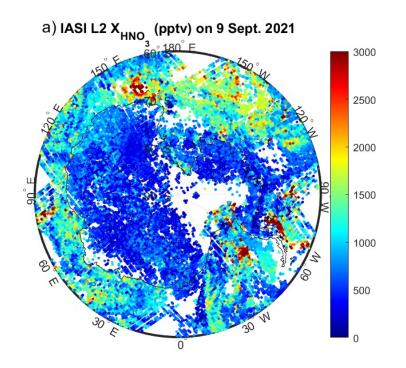


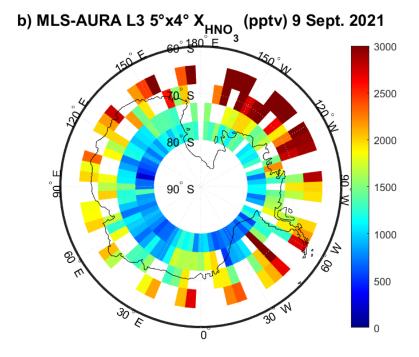
2021 Total Ozone zonal mean


- OMI and TROPOMI don't cover the pole (Night)
- IASI see a deeper and wider Ozone hole with respect ECMWF.
- Overall, our IASI level 2 data compare better with TROPOMI and MLS-AURA than OMI.
- OMI tends to be more coherent with the ECMWF analysis, could be just the results that OMI total ozone is of the level 3 type.

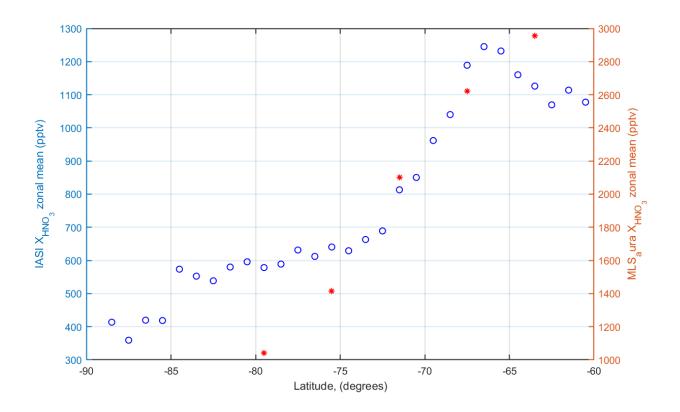


P_{min}, T_{min} & HNO₃


- In the inner continent, the temperature is well below 195 K (b)
- Pressure at Temperature inversion ranges 30-60 hPa (a)
- Low amount of HNO3 < 500 pptv in the inner continent (c)
- PSCs formation may lead to the removal of nitric acid from the gas phase.

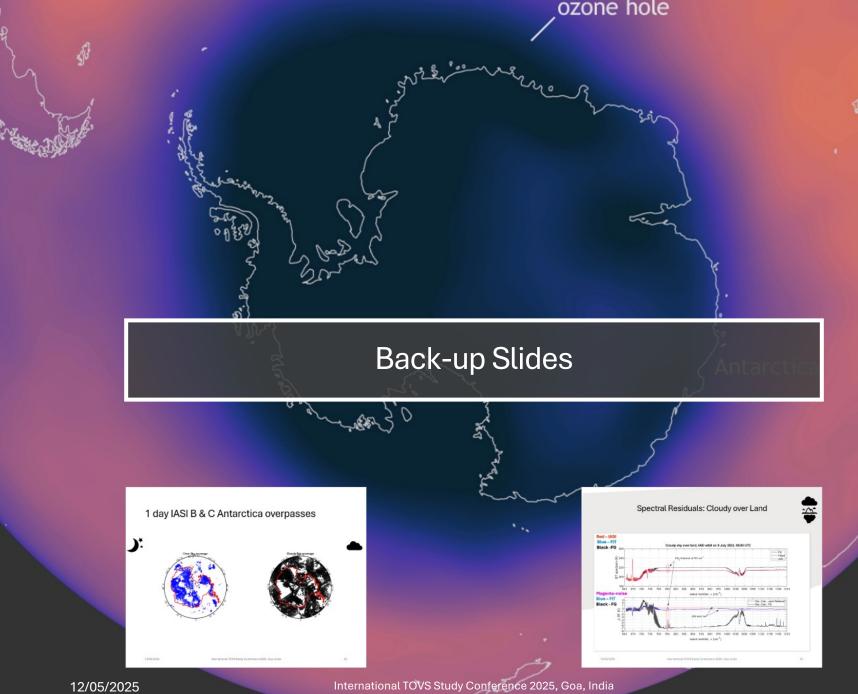


Zonal Mean of T_{min} & HNO₃



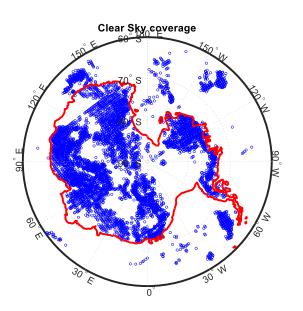
HNO3 (IASI v/s MLS)

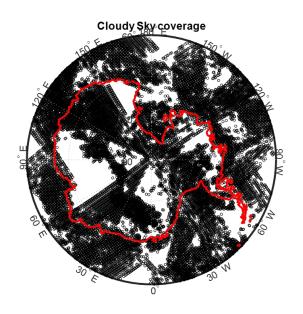
- Despite their different viewing geometries and spectral ranges and although the columnar contents are calculated on different columns, IASI and MLS see the same patterns for HNO3.
- Both IASI and MLS instruments observed denitrification over the Antarctica plateau


HNO3 Zonal average of on 9 Sept. 2021

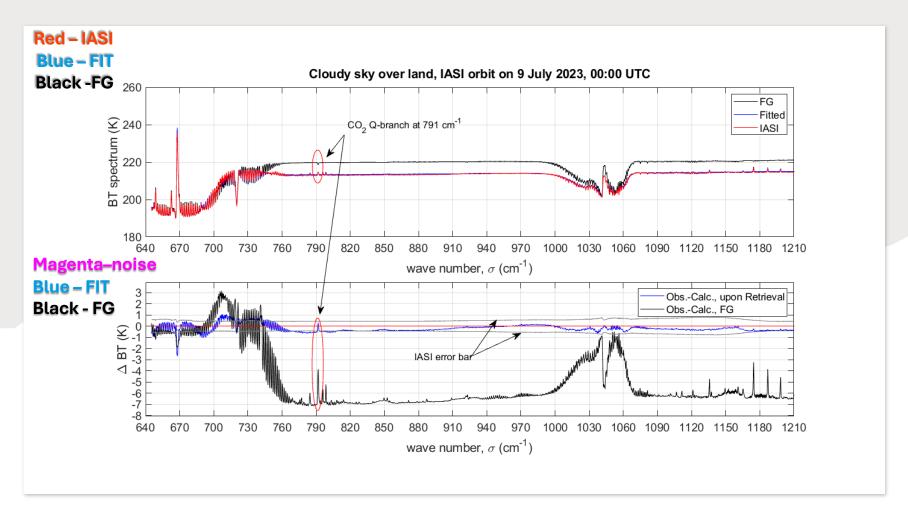
- left y-axis IASI;
- right y-axis MLS_aura
- Both IASI and MLS instruments observed denitrification over the Antarctica plateau

Conclusions


- φ-IASI-F2N: we developed a system integrating a direct and inverse models. The scheme simultaneously retrieve cloud optical properties, the atmosphere's thermodynamic, and composition state for the clear-cloudy sky
- Infrared Instrument Importance: Infrared instruments like IASI are crucial for improving the night/day coverage and spatial resolution of trace gases, enhancing our understanding of ozone depletion in the polar atmosphere.
- Ozone Hole and Denitrification: The onset of the ozone hole in September 2021 and 2023 (not shown here) was accompanied by significant denitrification of the polar atmosphere.
- Instrument Agreement: Both IASI (infrared) and MLS_aura (microwave) instruments observed this denitrification, despite their different viewing geometries and spectral ranges.
- NAT/PSC Clouds: NAT PSC clouds catalyzed ozone destruction, contributing to the overall ozone hole.



1 day IASI B & C Antarctica overpasses



Spectral Residuals: Cloudy over Land

