

Climate Change

Microwave temperature sounder fundamental climate data records for climate applications

Timo Hanschmann, Roger Huckle, Viju O. John, Jörg Schulz EUMETSAT

ITSC-25, Goa/India, 09.05.2025

Background

Climate

Ensemble data assimilation spread versus pressure and time for Temperature in ERA5 Left: From Bell, B., et al. (2021) The ERA5 global reanalysis: Preliminary extension to 1950

Right: From Hersbach, H., et al. (2020) The ERA5 global reanalysis

Background

- MW temperature sounder data are also used to monitor atmospheric temperature anomalies;
- MSU and AMSU-A measurements have been improved over the last decades;
- However, the calibration can be further improved, and measurement uncertainties can be estimated;
- SSM/T aboard of DMSP satellites operate parallel to MSU from 1991;
- SSM/T has more spectral channels providing more information of the higher atmosphere;
- SSM/T covering additional local equator crossing times;
- The value of using SSMIS data can be increased by using the highest peaking channels;
- Within a C3S framework this is being developed.

Figure taken from NOAA STAR

Climate

Change

- Flown on DMSP satellites F11 to F15
- 7 channel cross track scanning radiometer

Channel No.	Central frequency [GHz]	Bandwidth [MHz]	Ne∆⊤[K]	Peaking height [km]	
1	50.50	400	0.6	0	
2	53.20	400	0.4	2	
3	54.35	400	0.4	6	
4	54.90	400	0.4	10	
5	58,40	115	0,5	30	
6	58,825	400	0,4	16	
7	59,40	250	0,4	22	

Scan time [s]	32,0			
Number of FOVs	7			
IFOV nadir [km]	174			
IFOV edge [km]	305×313			
Swath width[km]	±1500			
IMPLEMENTED BY				

Time series of the SSM/T data record

Climate Change

54.35 GHz - Peaking height at 6 km

Obs-Sim | standard deviation

Climate

Change

54.35 GHz - Peaking height at 6 km

Validation of SSM/T

- Change
- AMSU-A for lower atmospheric channels:
 - NOAA 15, 16, and 17;
 - Operational data from 2000 onwards;
 - 50.5GHz, 54.35GHz, and 54.9GHz.
- Radio occultation (RO) for upper atmospheric channels:
 - RO from CHAMP satellite;
 - Data from 2000 onwards;
 - 54.35 GHz, 54.9GHz, 58.825GHz, 59.4GHz, 58.4 GHz
 - Processed by EUMETSAT's Radio Occultation Meteorology Satellite Application Facility
 - Forward simulation using RTTOV

Preparing SSMIS for ERA-6										
Climate	Channel No.	Frequency [Pol]	Band	Spatial Sampling [km]	Channel No.	Frequency [Pol]	Band	Spatial Sampling [km]		
	1	50.3	LAS	37.5	13	19.35 [V]	ENV	25		
	2	52.8	LAS	37.5	14	22.235	ENV	25		
ALC: N	3	53.596	LAS	37.5	15	37.0 [H]	ENV	25		
1 23	4	54.4	LAS	37.5	16	37.0 [V]	ENV	25		
	5	55.5	LAS	37.5	17	91.655 ± 0.9 [V]	IMA	12.5		
	6	57.29	LAS	37.5	18	91.655 ± 0.9 [H]	IMA	12.5		
	7	59.4	LAS	37.5	19	63.28 ± 0.28	UAS	75		
b Million	8	150±1.25	IMA	12.5	20	60.79 ± 0.36	UAS	75		
En la	9	183.31±6.6	IMA	12.5	21	60.79 ± 0.36 ± 0.002	UAS	75		
11	10	183.31±3.0	IMA	12.5	22	60.79 ± 0.36 ± 0.0055	UAS	75		
1	11	183.31±1.0	IMA	12.5	23	60.79 ± 0.36 ± 0.016	UAS	75		
	13	19.35 [H]	ENV	25	24	60.79 ± 0.36 ± 0.050	LAS	37.5		

- conical scanning radiometer on board of • **DMSP** satellites since F16
- 24 channels in 4 spectral bands

EUMETSAT

SSMIS in ERA-5

- Change
- In the (upper) mesosphere no observations are used in ERA-5;
- For the mesospheric channels (channels 19-21; ~50 80 km) the Zeeman effect impacts the measurements;
- Information on earth magnetic field is necessary to assimilate these channels;
- We extend the F17 SSMIS files for 2018 by
 - dot product of geomagnetic field with the satellite propagation vector (B dot k)
 - Squared geomagnetic field strength ;
- We tested the impact on simulating the observations by considering the Zeemann effect.

time series (SSMIS minus ERA5) 0 b s – S i m

- We use RTTOV 13.2
- ERA5 describes the atmospheric state
 - ERA5 top level at 0.01 hPa

Summary

- SSM/T data from DMSP satellites between 1991 and 2005 may add value to ERA6 and monitoring temperature anomalies;
 - SSM/T data show very good temporal stability and low biases against radio occultation data and comparable quality to AMSU-A operational data;
 - SSM/T data will likely improve the representation of the temperature diurnal cycle in the upper atmosphere in ERA6;
 - SSM/T may alleviate stratospheric temperature biases in ERA5 in the 1990s;
 - The SSM/T data record is available at <u>DOI 10.15770/EUM_SEC_CLM_0085</u>.
 - We are working on an SSMIS data record including earth magnetic field information enabling the use of SSMIS UAS channels in future reanalysis;
 - Uncertainty characterised MSU and AMSU-A data are planned to be reprocessed in the coming two years.

