

 The EUMETSAT Hyperspectral Infrared L2 products

 Updates and preparation of the next generation of instruments

On going developments

The EUMETSAT Hyperspectral Infrared L2 products

	Platform	Lifespan	Orbit	Sampling	Footprint
IASI	Metop	2007-2030	LE0	0.25 cm ⁻¹	12 km
IASI-NG	Metop-SG	2025-2046	LE0	0.125 cm ⁻¹	12 km
IRS	MTG-S	2025-2041	GEO	0.61 cm ⁻¹	4 km

EUMETSAT HSIR products

Level	Description
L1C	Radiances
L1D	Principal Components
L2	Geophysical Variables

Products: 3D Winds

Type: 3D fields

Algorithm: Optical Flow

EUMETSAT AC SAF Products

Products: CO, O₃, NH₃, HNO₃, SO₂ ...

Products: Temperature, Humidity and Ozone

Type: Profiles

Algorithm: PWLR³ (ML)

Products: Cloud mask, fraction, top height and phase

Type: Single layer

Algorithm: OEM

Products: Surface temperature and emissivity

Type: Skin SST/LST and ε PCs

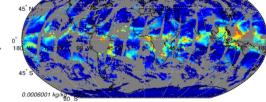
Algorithm: PWLR³ (ML)

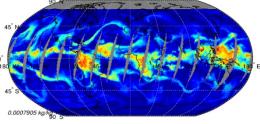
Products: Atmospheric composition (CO₂, N₂O, CH₄)

Type: Profiles or column

Algorithm: PWLR³ or ANN (ML)

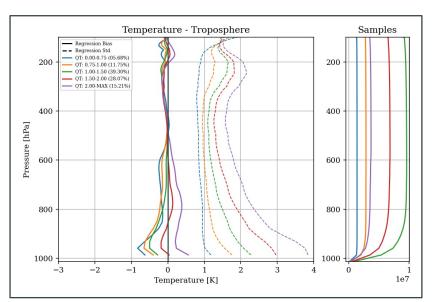
The PWLR³ algorithm for HSIR geophysical products

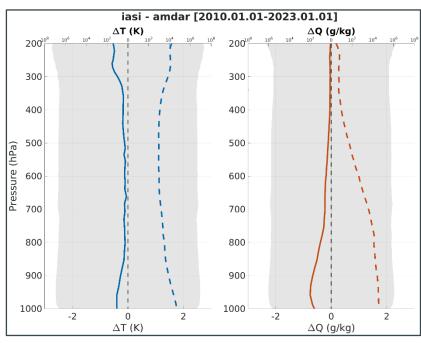

www.eumetsat.int


PWLR³: Piece-Wise Linear Regression in 3D

✓ ML for Geophysical Retrievals

- √ IR-MW Synergy
- √ Horizontal correlation



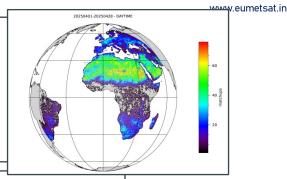

OEM clear sky

PWLR³ full sky

- √ Use of full IASI spectra (PCs)
- √ Ensemble retrieval approach
- ✓ Robust Error Characterization

Impact of quality indicator (Q_i) stratification on IASI-IGRA Temperature comparison

2010–2023 IASI-AMDAR Comparison Temperature (left) and Humidity (right)

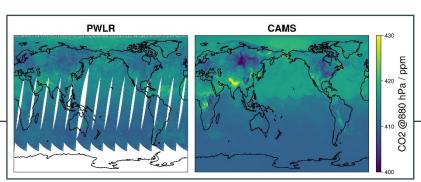

EUM/GES/TEM/07/2025, v4, 26 September 2023

PWLR³ updates for IASI, IASI-NG and IRS

Q2/2025: PWLR³ quality update (IASI L2 v6.8)

- PWLR³ can now be used as single main algorithm
- → Will be used to provide high quality IRS L2 products despite the very high data rate

Temperature


With

prior

forecast

2027: New major version and new format (IASI L2 v7, IRS/IASI-NG)

- Fix grid \rightarrow Sigma levels
- Scalar $Q_i \rightarrow$ Full error estimation profiles
- New demonstrational products:
 - TWLC/TWIC
 - CO_2/N_2O vertical information
 - Instability indices
 - T/q profiles with forecast prior

Temperature [K] Impact of using FCT prior on PWLR³

IRS PWLR³ LST test data

Without

forecast

prior

the v7 IASI L2 PWLR3 CO₂ product

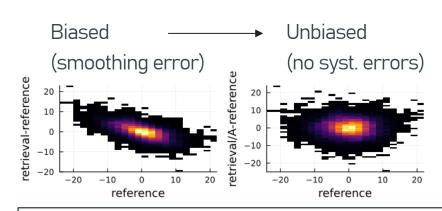
Developments: PWLR³ HSIR L2 assimilation

Using L2 observation operators to assimilate HSIR PWLR³ profiles

- ✓ L2 observation operators
 - Readily available and applicable in cloudy situations
 - Can be constructed such that they eliminate systematic errors
- √ Helps to deal with high data rate instruments like IRS
- ✓ EUMETSAT Studies:
 - Study #1 with ECMWF: Salonen et al. 2024
 - Study #2: on going, on regional assimilation (end in 2026)

Observation operator:

$$H = EV(AC_{xx}A^{T})_{[1:n]}$$


To use in assimilation cost function as

$$(Hx - 1/A Hx_r)^T R^{-1} (Hx - 1/A Hx_r)$$

A: Averaging Kernel

Cxx: Natural variability of the profiles

AC_{xx}A^T: atmospheric variability that can be retrieved

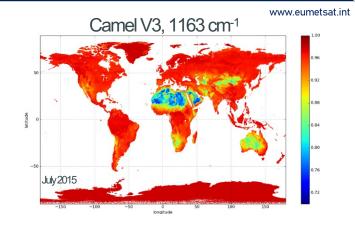
Scaling the retrieval by 1/A increases random noise, but removes systematic errors: a key trade-off in L2 assimilation.

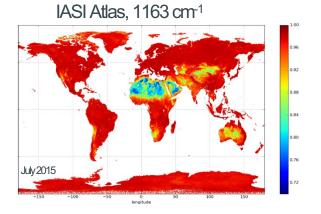
Developments: linear programming for emissivity retrieval

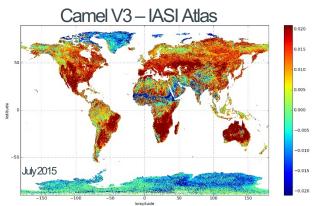
Surface emissivity can be retrieved from HSIR spectra using a physically meaningful linear programming retrieval

Emissivity, *e*, modeled as a combination of 87 ASTER base spectra, *B*.

$$e = B\lambda_0$$


$$0 \le \lambda_0$$


$$\sum \lambda_0 = 1$$


Radiance fit by simultaneous adjustment of emissivity and surface temperature, T_s .

$$\begin{aligned} \textit{Minimize} & \sum |\textit{rIASI} - \textit{rLP}| \\ r_{\mathit{LP}} &= r_{\mathit{F}} + \textit{KTs}\Delta T_{\mathit{s}} + \textit{KeB}(\lambda - \lambda_{0}) \\ r_{\mathit{F}} &= \textit{RTTOV}(e, \mathsf{Ts}) \\ 0 &\leq \lambda \\ &\sum \lambda = 1 \end{aligned}$$

Expected for IASI L2 v7, a bit later for new instruments

www.eumetsat.in

- EUMETSAT is preparing for IASI-NG and IRS L2 operations
 - Use of IASI heritage for IASI-NG and IRS...
 - ... and vice versa: next gen developments are used to improve IASI L2
- EUMETSAT is improving its HSIR L2 products
 - Continuous improvement of existing products
 - Development of new products and innovative algorithms
 - Use partners expertise and users feedbacks to provide the best products for all instruments

MTG-S1 (IRS L2 operations)

EPS-SG A1 (IASI-NG L2 operations)

Metop-B & -C

Metop-