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Motivations

• A pressing need exists to improve our understanding of the RTTOV coefficients
generation process
⇝ Retired experts: Marco Matricardi, Pascal Brunel, Roger Saunders, John
Eyre, Hal Woolf

• Many of our users treat the so-called RTTOV coefficients as a black-box

• Conduct a thorough investigation of all aspects of the process, focusing on
efficiency, stability, and accuracy
⇝ This is still going on

• Suggest potential improvements based on the findings
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Overview of RTTOV gas absorption’s parametric models

2002 2005 2008 2011 2013 2017 2020 2025

RTTOV-7

Pred-v7
• Variable O3

• Low Earth Orbit
VZA ∈ [0 − 64]◦

RTTOV-8

Pred-v8
• Separated model

for H2O lines and
continuum

• Variable CO2

RTTOV-9

Pred-v9
• Short-IR support

up to 85◦ to enable
solar contibution

• Variable N2O, CO
& CH4

RTTOV-10 RTTOV-11

• Visible channel
capability

• Geo sensors
capability

RTTOV-12

Variable SO2

RTTOV-13

Pred-v13
• New spectroscopy

HITRAN 12

• New transmit-
tance model

• Reduce database
storage

• Easier to imple-
ment new variable
gas

RTTOV-14

• New parametric model version are named after the RTTOV version in which
they have been introduced.

• RTTOV-v14 was released earlier this year

• Retirement of Pred 7, 8 & 9 anticipated for RTTOV-v15

• McMillin et al., Applied Optics, 1976, 1977, 1979, 1995a, 1995b, 2003

• Hocking et al., GMD, 2022
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Theoretical fundation of the gas absorption parameteric model

Let’s denote j the channel index and k the layer index.

Predictors v13 - 3 gases version - Model formulation

t̃ total
jk = t̃ mix

jk ·t̃ wv,cont
jk ·t̃ wv,line

jk ·t̃ O3
jk ·t̃ CO2

jk ·t̃ c
jk

Where the final correction term is

t̃ c
jk =

t̃ ∗,total
jk

t̃ mix
jk · t̃ wv,cont

jk · t̃ wv,line
jk · t̃ O3

jk · t̃ CO2
jk

With t̃ ∗,total
jk is the true total optical depth.

Where t̃
(·)

jk are the channel

integrated transmittances:

t̃
(·)
jk =

∫
ν̄
t
(·)
jk (ν′)srf j (ν

′)dν′

Cst

Where,
t̃ (·) ∈ Ω = {t̃ mix

jk , t̃ wv,cont
jk , t̃ wv,line

jk , t̃ O3
jk , t̃ CO2

jk , t̃ c
jk }

RTTOV coefficients are estimated for each terms of Ω, each channels and each layers:

Ntot = Nj × Nk × Card(Ω)

As an example...

IASI pred 13 with 3 variable gases

Niasi = 8461 × 100 × 6 = 5, 076, 600
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Channel Integrated transmittances datacubes

Wavenumbers
8461 × 1

Profiles
83 × 1

Layers
100 × 1

Secants
nsec× 1
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Theoretical fundation of the layer optical depth parameteric model

Layer optical depths τ̃∗ (.) are modeled as a multilinear regression:

τ̃
∗ (.)
jk = Xkcjk + ϵjk

where,

• τ̃
∗ (.)
jk : true layer optical depth: [(Nprof ×Nsec)× 1]

• c
(.)
jk : model parameters (RTTOV Coefficients): [Npred × 1]

• X
(.)

k : set of predictors depending on atmospheric model state and a specific gas:
[Npred × (Nprof ×Nsec)]

• ϵ
(.)
jk : additive noise (i.e. gaussian distributed): [(Nprof ×Nsec)× 1]
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Predictors/Features for the water vapour lines

The water vapour lines predictors are:

X
wv,line
k

=



(
sec (θ)Wr,k

)2
sec (θ)Ww,k(
(sec θ)Ww,k

)2
sec (θ)Wr,kδTk√

sec (θ)Wr,k

4
√

sec (θ)Wr,k
sec (θ)Wr,k

(sec (θ)Ww,k )
1.5

(sec (θ)Wr,k )
1.5

(sec (θ)Wr,k )
1.5δTk√

sec (θ)Wr,kδTk

(sec (θ)Ww,k )
1.25

sec (θ)W 2
r,k/Ww,k√

sec (θ)Wr,kWr,k/Wwt,k

sec (θ)
√

Ww,k



• Wr , Ww , Wwt quantities depending on Water Vapour concentration

• δT depends on distance to the mean Temperature profile
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Formulation of the coefficients estimation problem

Omitting j and k indexes.

The layer optical depth model parameters are estimated such as:

ĉ (·) = argmin
c

J (c)

where J is a weighted quadratic function:

J (c) =
(
τ̃∗ − τ̃ (·)(c)

)t
W

(
τ̃∗ − τ̃ (·)(c)

)
︸ ︷︷ ︸

weighted fit to target value

+ α ctc︸ ︷︷ ︸
regularization

Where:

• τ̃∗ are the true layer optical depth (target simulated with LBLRTM)

• τ̃ (·)(c) are the model layer optical depth

• W is a diagonal matrix of weights

• The L2 regularization term penalizes the “high values” of coefficients and is
controlled by an hyperparameter α
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Coefficients estimation – Goodness of fit on Water Vapour datacube

Coefficient of determination of RTTOV versus using Singular Value Decomposition

• RTTOV (Direct computation of an inverse matrix) & Singular Value
Decomposition shares some similar features in the overall metrics

• What are the differences ? We theoretically solve the same inverse problem...

• It turns out that we don’t really but that is not the full story!
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Coefficients estimation – The impact of solver
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Coefficients estimation – An ill-conditioned problem

• Sensitivity to different coefficients can vary substantially

• Some Predictors have less to no resolving power with respect to the target values

• Predictors are overally strongly correlated

• That is one of the reasons we need preconditioning (normalization, whitening...)
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Coefficients estimation - How does the fit look in the layer optical
depth space?

Fit with new coefficients. Fit with RTTOV coefficients.
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A notorious problem of RTTOV – breakdown of the linear model

The model is predicting negative optical depth
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Take home messages

• This is still an ongoing study which raises more questions than it answers yet!

• Our current inverse problem is strongly ill-conditioned
⇝ Mostly because of colinear features

• Is their room for improvement without changing the philosophy of the gas
absorption parametrization?
⇝ I strongly believe so

• Hybrid approach classification/regression could leverage current model limitations
⇝ Especially the nonlinearities

• Machine learning approach are probably flexible enough to fit the observed layer
optical depth
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