

HIMAWARI-10 SOUNDER OVERVIEW AND UPDATE

25th International TOVS Study Conference (ITSC-25) 8th - 14th May 2025 Goa, India

John Van Naarden John Holder, John Ehlert, Christina Simkowski, Lawrence Suwinski

NON-EXPORT CONTROLLED

THESE ITEM(S) / DATA HAVE BEEN REVIEWED IN ACCORDANCE WITH THE INTERNATIONAL TRAFFIC IN ARMS REGULATIONS (ITAR), 22 CFR PART 120.11, AND THE EXPORT ADMINISTRATION REGULATIONS (EAR), 15 CFR 734(3)(b)(3), AND MAY BE RELEASED WITHOUT EXPORT RESTRICTIONS.

Himawari-10 builds on long heritage of cooperation between Japan and United States

- Himawari-10 is follow-on to Japan's Himawari-8/9 satellites
 - Orbital position: near 140.7 E
 - 15-year mission life
- JMA overall timeline:
 - JFY2022: Program start
 - JFY2028: Launch
 - JFY2029: Operations begin
- Mission includes three payloads:
 - Geostationary HiMawari Imager (GHMI)
 - Geostationary HiMawari Sounder (GHMS)
 - Radiation Monitors for Space weather (RMS)
- Spacecraft built and integrated by Mitsubishi Electric Corporation
- Primary GHMI and GHMS payloads built by L3Harris

Himawari-10 Sounder (GHMS) capability to provide improved typhoon tracking prediction and improved heavy rain forecasting

Tropical cyclones and extreme rainfall continue to be major threat to people's life and property throughout Japan

- GHMS is a hyperspectral, infrared, radiometric sounder
- Provides vertical atmospheric profiles of temperature, winds, and water vapor for numerical weather models
- GHMS ability to frequently observe 3D atmospheric structure around Japan expected improve forecasts of destructive phenomena like typhoons and linear precipitation bands

GHMS expected to significantly improve forecasts that help protect life and property for citizens of Japan

L3HARRIS25th International TOVS Study Conference (ITSC-25); 8th - 14th May 2025 Goa, India
Himawari-10 Sounder Overview and Update

L3Harris Proprietary Information | Non-Export Controlled Information 3

GHMS design adapts successful Advanced Himawari Imager (AHI) platform for Himawari-10 hyperspectral sounding mission

- Evolves legacy imager into a hyperspectral sounder
 - Maintains overall structure and high-TRL front-end scan system
 - Replaces AHI imaging back-end with Hyperspectral Detector and Reimaging Assembly (HyDRA)
- GHMS is a Fourier Transform Spectrometer (FTS) system similar to CMA GIIRS and MTG IRS
- Maintains highly-flexible AHI scan capability that allows interleaving of observation areas
 - Operates in a step-stare mode to collect scenes
 - During each stare, interferometer sweeps to collect interferograms in 2 bands (MWIR & LWIR)

GHMS will contribute to geostationary sounder ring set out in the WIGOS 2040 vision

Parameter		(CMA) GIIRS-2	(MTG) IRS	(JMA) GHMS	(NOAA) GXS
Spectral Range	LWIR	700 – 1130 cm ⁻¹	680 – 1120 cm ⁻¹	680 – 1095 cm ⁻¹	680 – 1095 cm ⁻¹
	MWIR	1650 – 2250 cm ⁻¹	1600 – 2250 cm⁻¹	1689 – 2250 cm ⁻¹	1689 – 2250 cm ⁻¹
Spectral Resolution		0.754 cm ⁻¹	0.754 cm⁻¹	0.754 cm ⁻¹	0.754 cm ⁻¹
Spectral Sampling		0.625 cm ⁻¹	0.625 cm⁻¹	0.625 cm ⁻¹	0.625 cm ⁻¹
IR GSD		8 km	4 km	4.2 km	4 km
Operational		2021	2024	JFY2029	2035

Hyperspectral Detector and Reimaging Assembly (HyDRA) is the heart of the sounding mission

HyDRA 3D Print Model

HyDRA Component	Key Functionality / Performance		
Minibench	Structurally supports HyDRA Components		
Fold Mirror	Directs infrared energy from afocal telescope into interferometer		
Interferometer (IFM)	Modulates incoming energy into interferogramDefines spectral resolution and spectral sampling		
Reimaging Telescope Assembly (RTA)	Focuses energy onto Focal Plane Modules (FPMs)Defines GSD (along with FPMs)		
Detector Housing Assembly (DHA)	Defines MWIR & LWIR spectral bandsHolds FPMs and maintains co-registration between bands		
Cooler Assembly	Cools FPMs Critical to NEdT performance 	HyDRA	Largely Herita Structure & Sup

L3Harris scene & timeline architecture meets GHMS CONOPS requirements and enables flexible observations

- GHMS requires no changes to robust, flexible AHI scan system
 - Scan system directs the line-of-sight (LOS) in a step-and-stare mode
 - Two-mirror system natively supports GHMS step-stare collection scheme
- Inherently flexible scene & timeline architecture inherited from AHI
 - Multiple scenes and timelines can be loaded into memory
 - New scenes & timelines can be defined and uploaded at any time
 - Switching between loaded timelines is a single command
- GHMS is required to collect 9 or more observations areas in 60 minutes as defined in *GHMS Observation Ranges and Intervals* table
 - 1 Disk observation (every 60 minutes)
 - 4 Japan Area observations (every 15 minutes, first one cut from disk)
 - 4 Rapid-scan Target observations (every 15 minutes)

GHMS Observation Ranges and Intervals

Observation Type	Minimum Range	Observation Interval
Disk	Satellite zenith angle within 60 degrees	60 min
Japan Area	2500 km (E-W) x 2000 km (N-S) <i>Center</i> ≥ 25° <i>N latitude</i>	15 min ± 180 sec
Rapid-scan Target	1000 km (E-W) x 1000 km (N-S) Center ≥ 10° N latitude, ≤ 10° S latitude	15 min ± 180 sec

DISK OBSERVATION

- Size: >7.53° disk radius
- Center: Nadir
- <u>Collected stares</u>: 154 (19 rows)

JAPAN AREA

- <u>Size:</u> 3200 x 3200 km (@ 37°N latitude)
- <u>Center</u>: Moveable anywhere on Earth
- <u>Collected stares</u>: 12 (4 rows x 3 cols)

RAPID SCAN

- <u>Size:</u> 1000 x 1000 km (@ *10°N latitude*)
- <u>Center</u>: Moveable anywhere on Earth
- <u>Collected stares</u>: 2 (2 rows x 1 cols)

Example location

Initial Standard Observation timeline defined to collect all required observations

- Defined a 60-minute Standard Observation timeline to allow repeatable execution at 1-hour intervals
 - Sequence of observations meeting desired intervals
 - Includes observations necessary for calibration and navigation

GHMS Timeline Video

Ground processing algorithms transform raw science data into geolocated radiance spectra

- GHMS outputs interferograms (Level 0)
- Five algorithms convert interferograms into calibrated, navigated radiance spectra (Level 1b)
- Lossless raw interferogram compression technique newly patented for GHMS
 - Based on applying principal components analysis (PCA) to raw interferograms
 - Forkert, R., 2025, Next Generation Geostationary Imager & Sounder Compression Algorithms, 21st Annual Symposium on Operational Environmental Satellite Systems, 105th Annual Meeting American Meteorological Society
- Four subsequent algorithms largely based on processing from heritage instruments
 - CrIS: Cross-track Infrared Sounder
 - <u>TANSO-FTS-2</u>: Thermal And Near infrared Sensor for carbon Observation - Fourier Transform Spectrometer-2
- Initial draft of algorithms released to MELCO in November 2024

GHMS development heading toward system-level CDR

- Preliminary design phase concluded in 2024
 - Held ~45 subsystem/component PDRs
 - GHMS System PDR held November 2024
- Critical design phase in process
 - Held ~40 subsystem/component CDRs to date
 - Several critical subsystem CDRs remain
 - HyDRA CDR
 - Interferometer Electronics CDR
 - Flight Software CDR
 - GHMS System CDR tentatively planned for late 2025

L3HARRIS 25th International TOVS Study Conference (ITSC-25); 8th - 14th May 2025 Goa, India Himawari-10 Sounder Overview and Update

Full Size GHMS 3D Print Model & H10 PDR Team

