GeoXO and its Sounder Update

NOAA National Environmental Satellite, Data, and Information Service

CEANIC AND ATMOSPHER

NOAA

PATMENT OF COMMERCE

ISTRATION

Andrew Heidinger GEO Senior Scientist Ed Grigsby, GEO Program Director Dan Lindsey GOES-R Program Scientist Erica McGrath-Spangler, NASA-GMAO Zhenglong Li, UW-CIMSS

Evolution of GOES

GeoXO

Improved imager spatial resolution and additional spectral channels
Improved lightning mapping
Infrared sounding
Ocean color
Atmospheric composition

GeoXO Current Baseline

<u>GEO-West</u> Visible/Infrared Imager Lightning Mapper Ocean Color

GEO-Center

Hyperspectral Infrared Sounder Atmospheric Composition Partner Payload

<u>GEO-East</u> Visible/Infrared Imager Lightning Mapper Ocean Color

GeoXO Future is Uncertain

- GeoXO Program is being reviewed.
- Final decisions are unknown.
- We expect GeoXO to be more focused on the weather mission and to have a larger commercial role.
- We hope that a sounder will remain a part of the program.

Civil

by Debra Werner

• Stay tuned.

Planned GeoXO Weather Capabilities

Continuity of Weather and Hydrological Services	Enhancements for Weather and Hydrological Services
 Visible/Infrared Imager Lightning Mapper (LM) Receipt/relay of signals from Data Collection System (DCS) platforms and relay of commands to them Data rebroadcast using commercial services for High Rate Information Transmission, Emergency Managers Weather Info Network, Imagery 	 Hyperspectral IR Sounder Spatial and spectral resolution improvements for Imager Spatial resolution improvement for Lightning Mapper 2X the channels for DCS relay

pending final approval

GeoXO Will Underpin Broad Swath of NOAA's Weather Mission

Volcanoes GXI detects eruptions and tracks ash plumes

Wildfires

GXI detects hotspot formation and evolution and helps track smoke plumes LMX detects continuing-current

lightning strikes Monitors pyrocumulonimbus clouds and fire-generated lightning

Aviation GXI detects cloud and vapor patterns of turbulence and other risks

LMX detects lightning threat

GXS detects conditions where icing is likely to occur

Drought

GXS and GXI improve drought analys and forecasting; benefits agricultural planning and management

Tornadoes, Thunderstorms and Floods

GXS senses pre-storm environment; predicts storms before development

GXI detects cloud patterns before and during storm formation; monitors flooding

LMX detects lightning; improves severe storm warnings

Nor'easters and Open **Ocean Storms** improves forecasts GXI improves storm monitoring and tracking

Hurricanes GXI and LMX provide minute-by-minute monitoring improves hurricane track

GXI = Imager **LMX** = Lightning Mapper

GXS = IR Sounder

GeoXO Sounder Activities

Planned GeoXO Sounder Activities

- Generation of GXS Proxy Data and prototype profile retrievals for other applications.
- IRS Readiness for NOAA and NASA models (GFS, RRFS and GEOS).
- GeoXO sounder RRFS OSSE with NOAA/OAR/QOSAP
- Inclusion of GEO sounder data in NOAA/OAR/NSSL Warn on Forecast.

Studying methods for 3D Winds.

Open Questions about the GeoXO Sounder

- The GeoXO imager has 4 IR and 1 solar H₂O Channels and channels with O₃ and CO₂ sensitivity. What is the optimal method inclusion of these imager observations in the sounder applications?
- Is there a desire to make profiles and applications from the GEO-Ring of sounder from algorithms with similar approaches and performance? If so, can ITSC provide guidance?
- Does the sounder radiance community want similar PCA formats from each agency?
- Is 105W the optimal position of the GeoXO sounder?
- Optimal configuration of the NOAA LEO and GEO (and GEO-Ring) sounders are still discussed.

GOES West 137W

GOES Central 105W

GOES East 75W

GeoXO Sounder Proxy Datasets

- Two versions of GeoXO sounder proxy datasets have been created and are ready for community use:
 - V1 for FTS and V2 for grating system
 - Contain radiance/T/Q/U/V/Ts/Emis
- The high resolution (1km) ECMWF nature run (XNR1K) used to provide the atmosphere and surface conditions
- The UW-Madison Pressure-Layer Fast Algorithm for Atmospheric Transmittance (PFAAST) coupled with Texas A&M cloudy model to simulate all sky radiances
- The sounder is assumed to have a spatial resolution of 4km, a temporal resolution of 15 minutes, satellite longitude of 105W
- Both continental US (CONUS) and sounding disk
- Possible applications: sounding profile retrievals, nowcasting, 3D winds

V2 BT(K) of 909.2302 cm⁻¹

Prototype Profile Retrievals

200

(qm)

a 300 400

500

600 700

800

900 1000

- A Deep Neural Network (DNN) used to develop a GeoXO sounder profile retrieval algorithm.
- Use 100 PCA coefficients derived from radiances of all 2402 channels.
- Technique shows a robustness to the presence of cloud. Scene had only 34% clear-skies, but retrievals worked for 71%.
- Temperature and relative humidity quality are only slightly affected by increased cloud impact
- large negative values of LI indicate areas that could support severe storm outbreaks and development.
- This data will be used to test improvement in severe storm nowcasting skills with NWS.

Cloud impact on RH retrievals

Relative Humidity

·<0.5

0.5-1

1-2

2-3

3-4

4-5

10

Bias and RMSE (%)

15

0

5

20

25

The retrieved lifted index animation provides useful information on instability tendency for storm outbreak and development

2019-09-06, 1200 UTC Lifted Index [°C]

Forecast Impact over CONUS

GeoXO OSSE Impacts

- Largest radiance impact
 over CONUS
- High temporal frequency
- Constant spatial coverage

McGrath-Spangler et al. (2025)

GODDARD Hurricane Forecast Improvements

8 hurricanes studied

Overall improvement to forecast track

McGrath-Spangler et al. (2024)

Ongoing / Planned Data Assimilation Work For GeoXO

• Assimilate MTG/IRS radiance

- Radiance data preprocess (e.g. Bufr to IODA format etc)
- Collaborate CRTM application for MTG/IRS with JCSDA and other labs and centers
- Develop JEDI MTG/IRS assimilation capability

Refine satellite DA configuration

- Quality control and variational bias correction
- Add more satellite sensors
- Test data impacts (satellite and conventional observations)

Develop cycled MPAS/JEDI system

- Phase 1 with 3DVar assimilation using global uniform 15km grid
- Integrate satellite rad data assimilation capability into workflow
- Coordinate this work with the RRFSv2 development team
- Forecast Sensitivity and Data Impact Study:
 - Further spatial and temporal analysis of data impact analysis for RRFSv1 (FV3-GSI based)
 - Expand the preliminary data impact analysis for RRFSv2 (MPAS-JEDI based)

Conclusions

- GeoXO is going through a period of uncertainty and we don't know the outcome.
- We continue to hope that a sounder will be part of our program.
- We are working with a large community in the USA to get ready for a GEO sounder over the Western Hemisphere and look forward to MTG/IRS.
- We appreciate all of the coordination and guidance from the ITWG.

NOAA National Environmental Satellite, Data, and Information Service

10 January 2023

Backup

NOAA National Environmental Satellite, Data, and Information Service

18

IRS channel selections

The test dataset has 245 LWIR channels and 55 MWIR channels.

requir	ed_ch	anne	ls_lw	=			e de Service			
1	2	3	4	5	6	7	8	9	10	
11	12	13	14	15	16	17	18	19	20	
21	22	23	24	25	26	27	28	29	30	
31	32	33	34	35	36	37	38	39	40	
41	43	44	45	46	47	49	52	54	56	
57	58	59	60	63	64	65	66	67	68	
69	70	73	82	83	84	85	86	87	90	
91	92	95	96	97	101	102	103	104	105	
106	108	109	111	114	115	116	121	122	124	
125	126	127	129	131	141	147	149	152	160	
161	162	166	169	173	174	175	176	187	188	
189	190	192	194	195	197	198	199	200	202	
204	206	207	208	210	214	222	224	242	245	
267	268	281	284	286	287	288	289	320	331	
345	377	388	439	514	529	531	533	536	538	
540	542	543	544	548	549	550	556	561	562	
568	569	570	572	573	574	576	577	578	579	
580	581	582	583	584	586	587	588	589	590	
592	593	594	595	596	597	598	599	600	601	
602	606	609	611	614	615	616	617	618	619	
620	621	623	624	625	626	627	628	629	630	
631	632	633	634	635	636	637	638	639	640	
641	642	643	656	683	691	709	713	717	733	
746	757	761	784	806	820	821	822	823	825	
841	842	844	859	862						
requir	ed_ch	anne]	ls_mw	=						
5	9	11	15	17	19	20	27	28	30	
31	39	40	42	43	45	46	47	51	57	
58	59	60	61	62	65	70	73	74	75	
76	79	80	81	85	87	91	93	106	110	
111	115	118	126	141	159	160	173	176	177	
194	783	919	1049	1068						

Figure 6: Top: typical IASI spectrum with 500 selected channels marked by red crosses. Bottom: the equivalent IRS spectrum, with 300 channels from Coopmann (2022) marked by red crosses.

NWP SAF IRSPP User Manual v1.4: https://nwp-saf.eumetsat.int/site/download/documentation/irspp/NWPSAF-MO-UD-053-IRSPP_User_Manual.pdf

Total Data Impact (Full Domain)

Findings

Between Satellite Sensors:

- IR data show much larger total impacts than microwave data, mainly due to size difference
 - In terms of impact per obs., microwave data shows stronger impacts than the IR data.

GeoXO Data Delivery

21

GeoXO Sounder (GXS) coverage from 105 W

Baseline Requirements: IR Sounder(GXS)

75		Not the second of
60		Con the second
45		A PROVIDE
30		
15		121
0	Mark Con	· ·
-15		
-30		
-45		
-60		
-75		
90 105 120 135 150 165 180 165 150 135 120 105	90 75 60 45 30 15 0	15 30 45 60 75 90

Baseline Requirements			14.
GSD	4 km (Same as GOES-13 Imager IR)		400
Coverage Area	Sounding Disk (SD) defined by a 62° zenith angle centered at 105W		350
Revisit Time	60 minutes		
Spectral Coverage	4.44-5.92µm, 9.13-14.7µm		300 - H
Spectral Resolution	0.625 cm⁻¹		
Signal:Noise	NEdN requirements are comparable to those of other IR hyperspectral sounders		250

NOAA National Environmental Satellite, Data, and Information Service

22

GeoXO Timeline

