

Korea Meteorological Administration
Numerical Modeling Center

#### 8<sup>th</sup> May, 2025

# Assessing the Forecast Impact of Simulated GeoHIS Radiance using KIM-OSSE

Young-Jun Cho\*, Chang-Hwan Kim, Hyoung-Wook Chun, and Yong Hee Lee

Numerical Modeling Center, KMA, South Korea





Korea Meteorological Administration Numerical Modeling Center

- I. Background and Objectives
- **II.** Method and Data
- **III.** Results
- **IV.** Summary and Future plan



# Background

- KMA (Korea Meteorological Administration) plans to operate **GeoHIS** by 2037.
- $\bigcirc$  Thousands of channels in the range of about 670~2,250 cm<sup>-1</sup> for temperature and humidity profile retrieval.
- High temporal and spatial resolution (ex: 30 min and 4 km)
- % GeoHIS: Hyperspectral Infrared Souder onboard geostationary satellite

# WMO "Global Ring" vision: 5 GeoHISs until 2040 (WMO, 2019).

**WMO**, 2019: Vision for the WMO integrated global observing system in 2040, WMO Doc., 1243, 47pp.



<sup>3</sup> \*FY(FengYun), GeoHIS(Geostationary Hyperspectral Infrared Sounder), GeoXO(Geostationary Extended Observations), GHMS(Geostationary HiMawari Sounder), GIIRS(Geostationary Interferometric Infrared Sounder), GXS(GeoXO Sounder), IRS(InfraRed Sounder), MTG(Meteosat Third Generation)

Korea Meteorological Administration Numerical Modeling Center

# **Objectives**

- 1. GeoHIS improves real-time forecasting
- Instability, Total Precipitable Water, and wind shear from GeoHIS (Menzel et al., 2018; Holmlund et al., 2021; Li et al., 2021)

## [Severe Weather Monitoring]





Meso-scale Convective Cloud AWS rain gauge: 66.5 mm hr<sup>-1</sup>

- 2. GeoHIS radiance enhances data assimilation
- Contributing to improved accuracy in operational NWP (Joo et al., 2013; Eresmaa et al., 2017; Okamoto et al., 2020; Noh et al., 2021)

# [Initial field $\rightarrow$ NWP Improvement ]

![](_page_3_Figure_10.jpeg)

**KIM** (Korean Integrated Model): KMA's current operational global NWP model

Purpose: Assessing the impact of data assimilation through GeoHIS radiance in KIM predictions in terms of synoptic scale

predictability using geopotential height, temperature, vapor, and wind speed throughout the troposphere

![](_page_3_Picture_14.jpeg)

\* NWP(Numerical Weather Prediction)

4

# **Method and Data**

5

### **KIM-OSSE**

(Korean Integrated Model-Observing System Simulation Experiment)

![](_page_4_Figure_3.jpeg)

|              | ECO 1280 Nature Run dataset                             |
|--------------|---------------------------------------------------------|
| Model        | ECMWF (IFS cycle 43r1)                                  |
| Distribution | CIRA/CSU (Cooperative Institute for Research in the     |
|              | Atmosphere at Colorado State University)                |
| Coordinate   | Cubic octahedral grid                                   |
| Resolution   | Hor.: 9 km, Ver.: 137 layers (TCo1279L137)              |
|              | 14 months (2015. 9. 30.~2016. 11. 30.)                  |
| Period       | - Oct. 2015 (1 month): 1 hr interval, others: 3 hr int. |

 Table 2. Information about the ECO1280 Nature Run dataset.

Fig. 1. Research flow chart for forecast impact analysis using KIM-OSSE.

Korea Meteorological Administration Numerical Modeling Center

| KIM specifications  |                                                          |  |  |  |  |  |  |  |
|---------------------|----------------------------------------------------------|--|--|--|--|--|--|--|
| Model               | KIM4.1 (NE180, Horizontal: 25 km)                        |  |  |  |  |  |  |  |
| Data assimilation   | H4DEV (Hybrid 4D Ensemble Variational DA, NE090 50 km)   |  |  |  |  |  |  |  |
| Experiment period   | 2023.9.30~10.31.                                         |  |  |  |  |  |  |  |
| Verification period | 2023.10.5~10.25.                                         |  |  |  |  |  |  |  |
| CTL                 | 17 observations (conventional + satellites)              |  |  |  |  |  |  |  |
| EXP-1               | 18 observations: CTL + GeoHIS radiance at 1 hr intervals |  |  |  |  |  |  |  |
| EXP-2               | 18 observations: CTL + GeoHIS at 3 hr intervals          |  |  |  |  |  |  |  |

**Table 3.** KIM Specification used in this study.

KIM forecast impact by using simulated GeoHIS radiance

○ Calculate the CTL and EXP RMSE using NR data as a reference

 $\bigcirc$  Improvement rate (%): (RMSE<sub>CTL</sub> – RMSE<sub>EXP</sub>)/RMSE<sub>CTL</sub> x 100

#### Table 4. List of simulated observations used in the KIM-OSSE.

| Experiments | Type (Name)                                                                                                                                                                                                                                          |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CTL         | MW Sounder (AMSU-A, ATMS, MHS, MWHS2), MW Imager (AMSR2), IR<br>Sounder (IASI, CrIS), AMV, Scatterometer (SCAT Wind), IR Imager<br>(CSR/GK-2A, CSR/Himawari, CSR/MSG), GNSS (GNSS RO, Ground-based),<br>Conventional (Aircraft, Radiosonde, Surface) |
| EXP         | CTL + IR Sounder (GeoHIS)                                                                                                                                                                                                                            |

![](_page_5_Picture_8.jpeg)

# **Simulated GeoHIS radiances**

![](_page_6_Figure_1.jpeg)

Fig. 2. Observation coverage (GK2A: 0°N, 128.2°E) and band characteristics (Menzel et al., 2018).

| Table 5. Characteristics of simulated GeoH |
|--------------------------------------------|
|--------------------------------------------|

7

| Position             | GK2A location (Lat.: 0°N, Lon.: 128.2°E)                                                       |
|----------------------|------------------------------------------------------------------------------------------------|
| Spatial and temporal | 16 km and 1 hour                                                                               |
| resolution           |                                                                                                |
| Wavenumber range     | $700 + 120 \text{ cm}^{-1}(0.625 \text{ cm}^{-1})$                                             |
| (Spectral res.)      | /00~1,150 cm <sup>-</sup> (0.025 cm <sup>-</sup> )                                             |
| Number of channels   | 42 (69)                                                                                        |
| Channel selection    | Ch1(700 cm <sup>-1</sup> )~8, 11~17, 19, 21, 25, 27, 29, 31, 33, 35~45, 53,                    |
| (Wavenumber)         | <b>55, 57, 59, 61, 64, 67, 81, 93(757.5 cm<sup>-1</sup>),</b> 97~629(1092.5 cm <sup>-1</sup> ) |

- O DA preprocessing (Kim and Kang, 2022a; b)
- Exclude radiance less than 1.5 km due to Esfc and Tskin
- → 42 channels (Ch 1~93, 700~757.5 cm<sup>-1</sup>)
- Also, high latitude data considering slant path effect (SZA  $\geq$  55°)
- Cloud screening (ECMWF), bias correction , thinning (3° int.)

![](_page_6_Picture_10.jpeg)

Korea Meteorological Administration Numerical Modeling Center

\* GK2A(GEO-KOMPSAT-2A, Geostationary Korea Multi-Purpose Satellite-2A)

![](_page_7_Figure_0.jpeg)

# **Forecast impact (hourly data)**

Improvement Rate(%) =  $\frac{\text{RMSE}_{\text{CTL}} - \text{RMSD}_{\text{EXP}}}{\text{RMSE}_{\text{CTL}}} \times 100$ 

Validation regions (Globe, NH, Asia, and EA)

![](_page_7_Figure_3.jpeg)

![](_page_7_Picture_4.jpeg)

# **Temporal observation density impact (1 vs 3 hrs)**

Improvement Rate(%) =  $\frac{\text{RMSE}_{\text{CTL}} - \text{RMSD}_{\text{EXP}}}{\text{RMSE}_{\text{CTL}}} \times 100$ 

![](_page_8_Figure_2.jpeg)

### **1hr-temporal resolution**

# **3hr-temporal resolution**

| Globe Northern Hemisphere |       |       |       |      | 1      |       | As    | Asia East Asia |        |      |       |      |      | 1     | Globe |       |       |      |      |      | Northern Hemisphere |         |         |       |      |      |            |       | Ast    | ia    |       |      | East Asia |       |       |       |       |       |       |       |       |      |      |      |      |       |         |       |      |      |       |
|---------------------------|-------|-------|-------|------|--------|-------|-------|----------------|--------|------|-------|------|------|-------|-------|-------|-------|------|------|------|---------------------|---------|---------|-------|------|------|------------|-------|--------|-------|-------|------|-----------|-------|-------|-------|-------|-------|-------|-------|-------|------|------|------|------|-------|---------|-------|------|------|-------|
|                           |       | θ     | 24    | 48   | 72     | 96    | 12    | 3              | 0      | 24   | 48    | 72   | 96   | 120   | Ð     | 24    | 48    | 72   | 96   | 120  | Ð                   | 24      | 48      | 72    | 96   | 120  | ND.        | Ð     | 24     | 48    | 72    | 96   | 120       | Ð     | 24    | 48    | 72    | 96    | 120   | Ð     | 24    | 48   | 72   | 96   | 120  | Ð     | 24      | 48    | 72   | 96   | 120   |
| Q 700                     | hPa . | -1.64 | -0.37 | -0.4 | 1 0.1  | 5 0.5 | 1 0.1 | .1 -0          | 0.70   | 0.17 | 0.38  | 0.73 | 0.94 | 0.41  | -0.58 | 0.21  | 2.14  | 2.87 | 2.55 | 3.36 | -3.46               | 5 -0.24 | 2.13    | 1.79  | 1.30 | 0.87 | Q 700hPa   | -0.17 | 7 0.01 | -0.27 | -0.08 | 9.18 | -0.20     | 0.20  | -0.37 | -0.67 | -0.46 | 0.27  | -0.35 | 0.70  | 0.36  | 1.39 | 1.26 | 1.89 | 1.03 | -0.86 | 6 -0.09 | 0.51  | 0.69 | 2.06 | -0.60 |
| WS 250                    | hPa . | -0.21 | -0.54 | -0.2 | 8 0.2  | 0.2   | 7 -0. | 19 -0          | 9.19 - | 0.04 | 0.27  | 1.06 | 0.45 | 0.28  | -0.22 | -0.12 | -1.68 | 1.83 | 3.58 | 4.88 | -0.10               | 0 1.07  | 0.13    | 1.34  | 3.04 | 3.46 | WS 250hPa  | -0.26 | 6 0.04 | 0.15  | 0.87  | 1.38 | 1.20      | -0.51 | -0.04 | 0.04  | 0.92  | 0.34  | 0.08  | 0.02  | -0.24 | 1.07 | 0.94 | 2.86 | 4.17 | -0.31 | 0.60    | 2.39  | 0.74 | 3.66 | 4.32  |
| WS 500                    | hPa . | -0.25 | 0.16  | 0.15 | 6 0.7  | L 0.4 | 3 0.2 | 7 -0           | 0.14   | 0.33 | 0.44  | 1.25 | 0.98 | 0.65  | -0.68 | -0.22 | 0.33  | 2.08 | 3.26 | 4.02 | -1.12               | 2 -0.52 | 2 -0.50 | 1.44  | 1.97 | 1.06 | WS 500hPa  | -0.11 | 1 0.08 | 0.09  | 0.58  | Ð.84 | 0.91      | -0.03 | 0.31  | 0.14  | 0.25  | 0.56  | 0.31  | -0.09 | 0.01  | 0.68 | 1.21 | 1.85 | 3.75 | -0.54 | 0.01    | 1.36  | 0.59 | 2.43 | 2.08  |
| WS 850                    | hPa . | -0.06 | 0.06  | 0.42 | 0.1    | 2 0.5 | 3 0.1 | .4 0           | .06    | 0.16 | 0.53  | 0.85 | 0.22 | 0.37  | -0.38 | -0.34 | 0.15  | 3.46 | 3.05 | 1.90 | -0.57               | 7 -0.19 | 0.42    | 3.60  | 1.67 | 1.14 | WS 850hPa  | 0.04  | 0.01   | 0.34  | 0.73  | 9.72 | 0.39      | 0.06  | 0.10  | 0.63  | 0.65  | 0.10  | -0.14 | 0.01  | 0.19  | 1.12 | 3.03 | 2.39 | 1.11 | -0.28 | 8 0.24  | 1.47  | 3.21 | 2.20 | 1.71  |
| GPH 250                   | hPa j | 13.77 | 3.63  | 0.77 | 0.6    | 1 0.5 | 7 0.3 | 4 11           | 1.38   | 3.64 | 0.99  | 1.10 | 0.33 | 0.24  | 11.72 | 2.31  | -1.14 | 3.24 | 5.24 | 6.66 | 9.95                | 1.68    | -3.05   | 0.30  | 3.55 | 5.17 | GPH 250hPa | 6.31  | 3.10   | 1.63  | 1.83  | 1.94 | 1.58      | 5.36  | 2.44  | 0.51  | 0.43  | 0.87  | 0.86  | 2.98  | 2.13  | 0.66 | 2.62 | 3.42 | 4.37 | 4.39  | 3.23    | -0.48 | 0.80 | 2.27 | 3.57  |
| GPH 500                   | hPa   | 9.74  | 3.77  | 1.55 | 5 1.2  | 5 0.9 | 7 0.6 | 1 8            | .42    | 2.82 | 1.34  | 1.44 | 1.18 | 0.80  | 9.01  | 3.18  | 1.41  | 4.11 | 5.73 | 7.38 | 12.04               | 4 3.45  | -0.11   | 2.84  | 2.92 | 3.15 | GPH 500hPa | 2.76  | 1.30   | 1.04  | 1.38  | 1.45 | 1.22      | 2.24  | 1.00  | 0.74  | 0.36  | 0.95  | 0.66  | 1.67  | 1.72  | 1.89 | 1.87 | 3.30 | 4.57 | 4.30  | 2.99    | 1.24  | 1.41 | 2.61 | 3.28  |
| GPH 850                   | hPa . | -0.01 | -0.23 | 0.06 | 6 0.0  | 1 0.2 | 1 0.4 | 9 - 6          | 9.01 - | 0.03 | -0.02 | 0.38 | 0.22 | 0.41  | -0.07 | -0.00 | 0.01  | 1.12 | 1.14 | 2.04 | 0.01                | -0.07   | 0.18    | 2.21  | 0.73 | 1.19 | GPH 850hPa | 0.01  | -0.10  | 0.18  | 0.46  | 9.84 | 1.33      | 0.06  | -0.01 | 0.20  | 0.18  | 0.17  | 0.37  | 0.08  | -0.04 | 0.30 | 0.36 | 0.73 | 1.35 | 0.06  | 0.21    | 0.95  | 0.85 | 1.36 | 1.17  |
| T 250                     | hPa . | -0.33 | -0.11 | -0.0 | 4 -0.1 | 0.0   | 5 -Θ. | 45 -0          | 9.43 - | 0.19 | 0.08  | 0.63 | 0.32 | -0.44 | -0.57 | -0.35 | -1.48 | 0.26 | 3.95 | 4.30 | -1.57               | 7 -0.42 | 2 -1.11 | -0.34 | 3.25 | 2.34 | T 250hPa   | -0.29 | 9 0.58 | 0.71  | 0.70  | 1.09 | 0.69      | -0.43 | -0.48 | 0.06  | -0.34 | -0.08 | -0.48 | -0.56 | 0.57  | 0.96 | 0.10 | 3.22 | 3.61 | -0.78 | 3 1.50  | 2.37  | 0.76 | 3.76 | 2.88  |
| T 500                     | hPa   | 0.25  | 0.33  | θ.11 | L 0.2  | L 0.2 | 1 0.4 | 6 -0           | 9.16 - | 0.05 | 0.00  | 1.15 | 0.13 | 0.78  | -0.52 | -1.11 | -1.22 | 2.21 | 3.24 | 5.03 | 0.20                | -1.47   | -1.95   | 0.84  | 0.90 | 3.67 | T 500hPa   | 0.37  | 0.66   | 0.68  | 0.71  | 1.25 | 1.23      | -0.03 | 0.54  | 0.30  | 0.29  | 0.16  | 0.55  | 0.32  | 0.39  | 1.12 | 0.93 | 2.33 | 4.13 | -0.25 | 5 1.42  | 2.13  | 0.28 | 0.70 | 3.28  |
| T 850                     | hPa   | 1.08  | 1.05  | 0.85 | 6 0.6  | 5 0.8 | 1 0.7 | 1 0            | .26    | 0.37 | 0.65  | 0.60 | 0.47 | 0.26  | -0.42 | 0.16  | 0.74  | 1.80 | 2.72 | 4.53 | 0.39                | 0.22    | 0.75    | 1.70  | 0.89 | 3.73 | T 850hPa   | -0.21 | 1 0.05 | 0.42  | 0.58  | 9.81 | 0.66      | -0.46 | -0.09 | 0.60  | 0.50  | 0.07  | -0.0  | -0.39 | -0.27 | 1.06 | 1.54 | 2.88 | 2.98 | 0.01  | 0.16    | 2.52  | 2.40 | 2.75 | 2.62  |

**Fig. 4.** Scorecard (improvement rate, %) for atmospheric variables and regions at 00 UTC during the period of 5~25 October 2023. T, GPH, WS, and Q denote temperature (K), geopotential height (m), wind speed (m s<sup>-1</sup>), and relative humidity (%), respectively. **Positive values and green color indicate improvement.** 

![](_page_8_Picture_7.jpeg)

# **Summary and Future plan**

## Summary

**KIM-OSSE experiments**: CTL (17 observations), EXP-1 (CTL+GeoHIS\_1hr), and EXP-2 (CTL+GeoHIS\_3hr)

- GeoHIS improves GPH in mid- to upper-level (500~250hPa)

- Noticeable improvement of GPH in middle-upper level over the Asia and East Asia region

| Decion              | GPH at 500     | hPa pressure level (00UTC)           |                      |
|---------------------|----------------|--------------------------------------|----------------------|
| Region              | Analysis field | Forecast field                       |                      |
| Northern hemisphere | 8.4%           | (24~72 hrs) 1.4~2.8%                 | 050/6.1              |
| Asia (East Asia)    | 9.0% (12%)     | (24 hrs) 3.2%, (72~120 hrs) 4.1~7.4% | 95% confidence level |

- The higher temporal resolution (hourly) of GeoHIS enhances the improvement rate compared with its coarse counter part (3 hourly)

**Future plan**: GeoHIS DA improvement, Double- and multi-GeoHIS applications (obs. schedule, channel etc)

 Cho et al., 2025: Forecast Impact of the Geostationary Hyperspectral Infrared Sounder (GeoHIS) using the Korean Integrated Model-Observing System Simulation Experiment (KIM-OSSE). Atmosphere-Korea, 35(1), 39-49 (in Korean with English abstract).

• Cho et al., 2025: KIM Forecast Impact according to Observation Density of the Next-generation GeoHIS: KIM-OSSE Experiment (in progress).

![](_page_9_Picture_10.jpeg)

![](_page_10_Picture_0.jpeg)

Korea Meteorological Administration Numerical Modeling Center

# Thank you for your attention!

![](_page_10_Figure_3.jpeg)

# **Backup slides**

![](_page_11_Picture_1.jpeg)

# **Forecast impact (hourly data)**

![](_page_12_Figure_2.jpeg)

**Fig. 7.** Scorecard (improvement rate, %) and statistical significance levels ( $1 \sim 3\sigma$ , approximately 68~99%) for atmospheric variables and regions at 00 UTC during the period of 5~25 October 2023. T, GPH, WS, and Q denote temperature (K), geopotential height (m), wind speed (m s<sup>-1</sup>), and relative humidity (%), respectively. Positive values and green color indicate improvement.

![](_page_12_Picture_4.jpeg)

13

**Table 6.** Analysis and forecast impact (improvement rate, %) at 00 UTC based on GeoHIS data assimilation in KIM.

|                       | 00 UTC (Valio       | dation period: 10.5~25.) |                            |  |  |  |  |  |
|-----------------------|---------------------|--------------------------|----------------------------|--|--|--|--|--|
| Variables             | Regions             | Analysis field           | Forecast field (24~120hrs) |  |  |  |  |  |
|                       | Globe               | 9.7~13.8%                | 0.3~3.8%                   |  |  |  |  |  |
| Geopotential neight   | Northern Hemisphere | 8.4~11.4%                | 0.9~3.6%                   |  |  |  |  |  |
| (250~500 IIPa)        | Asia                | 9.0~13.0%                | 1.4~7.4%                   |  |  |  |  |  |
| T (                   | Globe               | 1.1%                     | 0.7~1.1%                   |  |  |  |  |  |
| I emperature          | Northern Hemisphere | 0.3%                     | 0.3~0.7%                   |  |  |  |  |  |
| ( <del>850</del> nPa) | Asia                | -0.4%                    | 0.2~4.5%                   |  |  |  |  |  |

![](_page_13_Picture_3.jpeg)

# Improvement Rate(%) = $\frac{\text{RMSE}_{\text{CTL}} - \text{RMSD}_{\text{EXP}}}{\text{RMSD}_{\text{EXP}}} \times 100$

# **Observation density impact (1 vs 3 hrs)**

#### 2023100500 - 2023102500, TARGET INIT, KATSTYLE

RMSECTL

![](_page_14_Figure_3.jpeg)

rological Administration I Modeling Center

![](_page_15_Figure_0.jpeg)

Fig. 8. Same as Figure 7 except for the 12 UTC.

![](_page_15_Picture_2.jpeg)

16

![](_page_16_Figure_0.jpeg)

Numerical Modeling Center

# **Method and Data**

 Table 2. Information about the ECO1280 Nature Run dataset.

|                                           | ECO 1280 Nature Run dataset                                 |  |  |  |  |  |  |  |
|-------------------------------------------|-------------------------------------------------------------|--|--|--|--|--|--|--|
| Model                                     | ECMWF (IFS cycle 43r1)                                      |  |  |  |  |  |  |  |
| <b>D</b> , <b>1</b> , <b>1</b> , <b>1</b> | CIRA/CSU (Cooperative Institute for Research in the         |  |  |  |  |  |  |  |
| Distribution                              | Atmosphere at Colorado State University)                    |  |  |  |  |  |  |  |
| Coordinate                                | Cubic octahedral grid                                       |  |  |  |  |  |  |  |
| Resolution                                | Hor.: 9 km, Ver.: 137 layers (TCo1279L137)                  |  |  |  |  |  |  |  |
| D 1                                       | 14 months (2015. 9. 30.~2016. 11. 30.)                      |  |  |  |  |  |  |  |
| Period                                    | - Oct. 2015 (1 month): 1 hr interval, others: 3 hr interval |  |  |  |  |  |  |  |

○ Similarity between NR and real atmosphere

- Comparison of ERA-5 in zonal-averaged temp. and u/v-vector. (Cucurull et al., 2024)
- GPCP monthly mean precipitation amount (Han et al., 2023) NR precipitation GPCP precipitation

![](_page_17_Figure_6.jpeg)

**Fig. 3**. Comparison of monthly mean precipitation amount (mm/day) between Nature Run and GPCP in October 2015.

![](_page_17_Picture_8.jpeg)

Korea Meteorological Administration Numerical Modeling Center

\*ECO: ECMWF Cubic Octahedral, GPCP: Global Precipitation Climatology Project, ERA-5: ECMWF Reanalysis v5