# Simulation and Evaluation of NOAA Next-gen Microwave Satellite Observation with the ECMWF EDA method

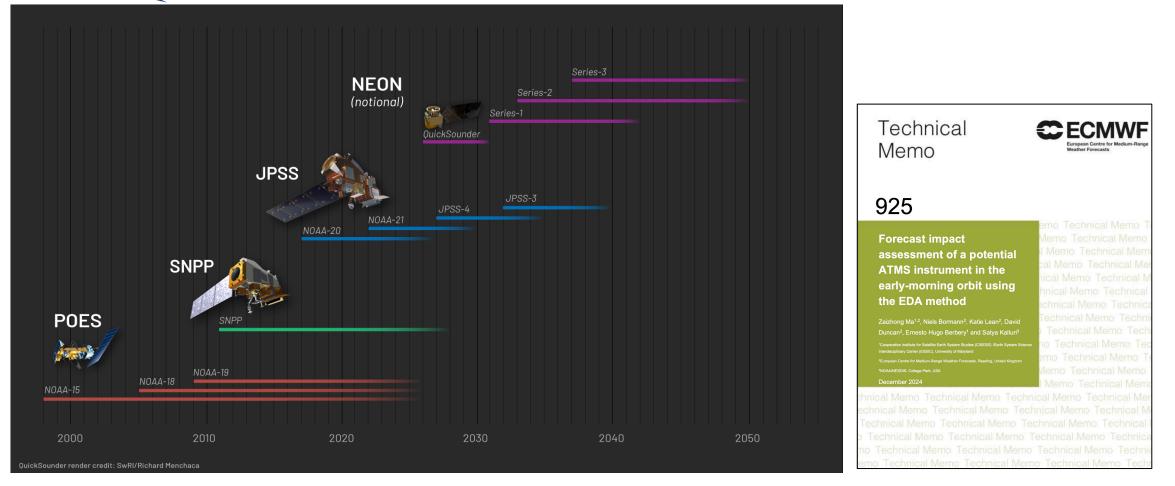
Zaizhong Ma<sup>1,2</sup>, Niels Bormann<sup>2</sup>, Katie Lean<sup>2</sup>, David Duncan<sup>2</sup>, Ernesto Hugo Berbery<sup>1</sup> and Satya Kalluri<sup>3</sup>

<sup>1</sup>Earth System Science Interdisciplinary Center, University of Maryland, College Park, USA <sup>2</sup>European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom <sup>3</sup>NOAA/NESDIS, College Park, USA

Thanks to all members of Microwave team at ECMWF






## Contents

- Background
  - NOAA LEO Next-gen Program: Near Earth Orbit Network (NEON)
  - ECMWF Ensemble of Data Assimilation (EDA) Method for future mission impact study
- Sounder for Microwave Brightness and Analysis (SMBA) EDA Experiments
  - Channel Characteristics
  - EDA Impact Studies of SMBA at 13:30 and 17:30 LTAN
- Summary & Future Plans



NEAR EARTH DRBIT NETWORK

## NOAA's Near Earth Orbit Network (NEON) Program



- QuickSounder: Refurbished ATMS in 1730 orbit
- <u>SMBA</u>: Sounder for Microwave Brightness and Analysis is expected to be a hyperspectral sounder, but here we assume traditional channel characteristics.

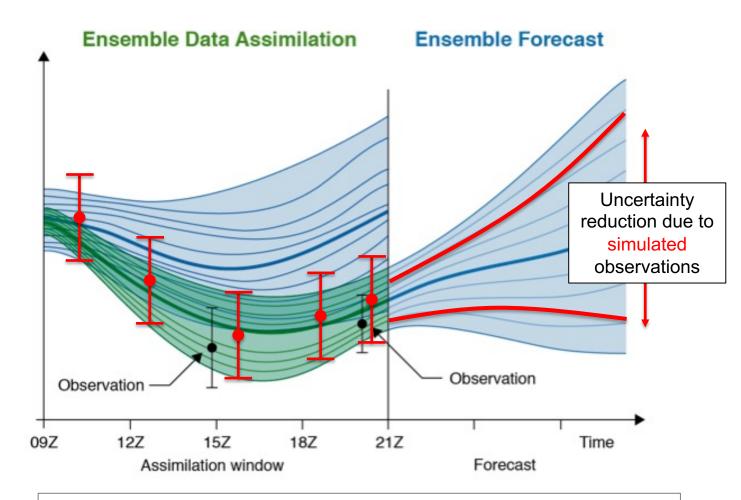


## Sounder for Microwave Brightness and Analysis (SMBA) instrument characteristics

More channels than ATMS

- SMBA is expected to be hyperspectral, but we don't simulate that in this study.
- For the technical implementation of SMBA we are assuming the following:
  - Channels as defined in the table;
  - Geographical sampling same as ATMS (to be simulated by EUMETSAT).

| Priority     | Center Frequency <sup>(1)</sup><br>(GHz) | Center<br>Frequency<br>Stability <sup>(2)</sup><br>(MHz) | Channel<br>Bandwidth<br><sup>(3)</sup><br>(GHz) | Calibration<br>Accuracy<br>(K) | Temperature<br>Sensitivity<br>NEDT<br>@300K (K) |
|--------------|------------------------------------------|----------------------------------------------------------|-------------------------------------------------|--------------------------------|-------------------------------------------------|
| (III) (IV)   | 23.8                                     | 5                                                        | 0.27                                            | 0.5                            | 0.24                                            |
| (III) (IV)   | 31.4                                     | 5                                                        | 0.18                                            | 0.5                            | 0.28                                            |
|              | 50.3                                     | 4                                                        | 0.18                                            | 0.5                            | 0.33                                            |
|              | 51.76                                    | 4                                                        | 0.4                                             | 0.5                            | 0.22                                            |
|              | 52.8                                     | 4                                                        | 0.4                                             | 0.5                            | 0.22                                            |
|              | 53.596 ± 0.115                           | 3                                                        | 0.17                                            | 0.5                            | 0.24                                            |
|              | 54.4                                     | 2                                                        | 0.4                                             | 0.5                            | 0.22                                            |
| (I)          | 54.94                                    | 3                                                        | 0.4                                             | 0.5                            | 0.22                                            |
| (ív)         | 55.5                                     | 3                                                        | 0.33                                            | 0.5                            | 0.30                                            |
|              | 57.290344                                | 0.3                                                      | 0.33                                            | 0.5                            | 0.35                                            |
|              | 57.290344 ± 0.217                        | 0.4                                                      | 0.078                                           | 0.5                            | 0.45                                            |
|              | 57.290344 ± 0.3222 ± 0.048               | 0.9                                                      | 0.036                                           | 0.5                            | 0.50                                            |
|              | $57.290344 \pm 0.322 \pm 0.022$          | 0.4                                                      | 0.016                                           | 0.5                            | 0.75                                            |
|              | 57.290344 ± 0.322 ± 0.010                | 0.4                                                      | 0.008                                           | 0.5                            | 1.00                                            |
|              | $57.290344 \pm 0.3222 \pm 0.0045$        | 0.5                                                      | 0.003                                           | 0.5                            | 1.60                                            |
| (III) (IV)   | 88.2                                     | 18                                                       | 2                                               | 0.5                            | 0.20                                            |
|              | 114.50                                   | 1                                                        | 1                                               | 0.5                            | 0.30                                            |
|              | 115.95                                   | 1                                                        | 0.8                                             | 0.5                            | 0.30                                            |
|              | 116.65                                   | 1                                                        | 0.6                                             | 0.5                            | 0.30                                            |
| (I)          | 117.25                                   | 1                                                        | 0.6                                             | 0.5                            | 0.30                                            |
|              | 117.80                                   | 1                                                        | 0.5                                             | 0.5                            | 0.40                                            |
|              | 118.24                                   | 1                                                        | 0.38                                            | 0.5                            | 0.40                                            |
|              | 118.58                                   | 1                                                        | 0.30                                            | 0.5                            | 0.50                                            |
| (III)        | 165.5                                    | 22                                                       | 3                                               | 0.4                            | 0.30                                            |
|              | 183.31 ± 7                               | 14                                                       | 2                                               | 0.4                            | 0.26                                            |
| (II)<br>(IV) | 183.31 ± 4.5                             | 14                                                       | 2                                               | 0.4                            | 0.26                                            |
|              | 183.31 ± 3                               | 16                                                       | 1                                               | 0.4                            | 0.36                                            |
|              | 183.31 ± 1.8                             | 10                                                       | 1                                               | 0.4                            | 0.36                                            |
|              | 183.31 ± 1                               | 9                                                        | 0.5                                             | 0.4                            | 0.50                                            |
| (III)        | 229                                      | 22                                                       | 2                                               | 0.5                            | 0.36                                            |

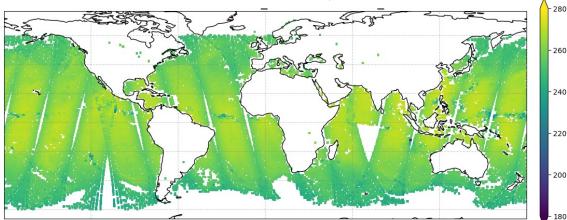

- (1) Number of passbands per channel, listed in "Center Frequency" column, is maximum allowed. Fewer passbands may be used, provided the Temperature Sensitivity requirements are met. For example, Table 4.1-1 lists two passbands centered at (183.31 + 7) = 190.31 GHz and (183.31-7) = 176.31 GHz. The channel may be implemented using only one of these passbands, provided the temperature sensitivity value of no greater than 0.3 K is achieved.
- (2) Channel center frequency stability is defined as the maximum deviation from the channel center frequency for both long-term and short-term periods over the operational life of the instrument.
- (3) Channel bandwidth is defined as the spectral width between the half-power points per passband.
- (I) Performance Capability Priority 1: Temperature Sounding
- II) Performance Capability Priority 2: Moisture Sounding
- III) Performance Capability Priority 3: Additional Channels
- (IV) Performance Capability Priority 11: ATMS Channel Continuity



### Ensemble of Data Assimilations (EDA) method to assess future observations

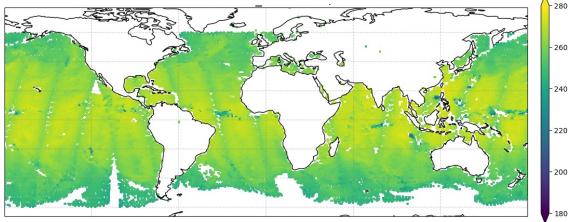
- EDA consists of:
  - Finite number of independent cycling assimilation systems
  - Uses real and added simulated observations
  - Observations, forecast model and SSTs perturbed to generate different inputs for each member
- Benefit of additional data measured by reduction in variation across different members

   "EDA spread" → reducing forecast/analysis uncertainties
- Assumes errors of the simulated observations are realistic
- Focus on spread changes at 12-hour forecast range




EDA spread = standard deviation of ensemble members around the ensemble mean




## Aims of SMBA EDA impact study

- Simulate the impact of a hypothetical future sounder using the EDA
  - 30 channels, with seven 118 GHz channels and one 229 GHz channel added to the ATMS channel set
  - Used in 13:30 and 17:30 LTAN orbits (replacing ATMS)
  - Assess the added impact of the 118 and 229 GHz channels and the sensitivity to the noise-performance



### **New 116.65 GHz channel, simulated**

### FY-3D MWHS-2, 118.75±2.5 GHz, real data





## SMBA EDA experiments with two sets of observation errors

-Two settings for assigned observation errors are used:

• **Idealised**: Use specified NEDT values in empirical formula as in Lean et al (2025)

- Assumes ideal white-noise performance can be achieved for NEDT

• **Baseline**: Values as used for real NOAA-20 ATMS for 50 and 183 GHz channels, otherwise results of empirical formula \* 1.2

- Assumes performance similar to ATMS for heritage channels

-Tests the sensitivity of the results to the assumed error characteristics.



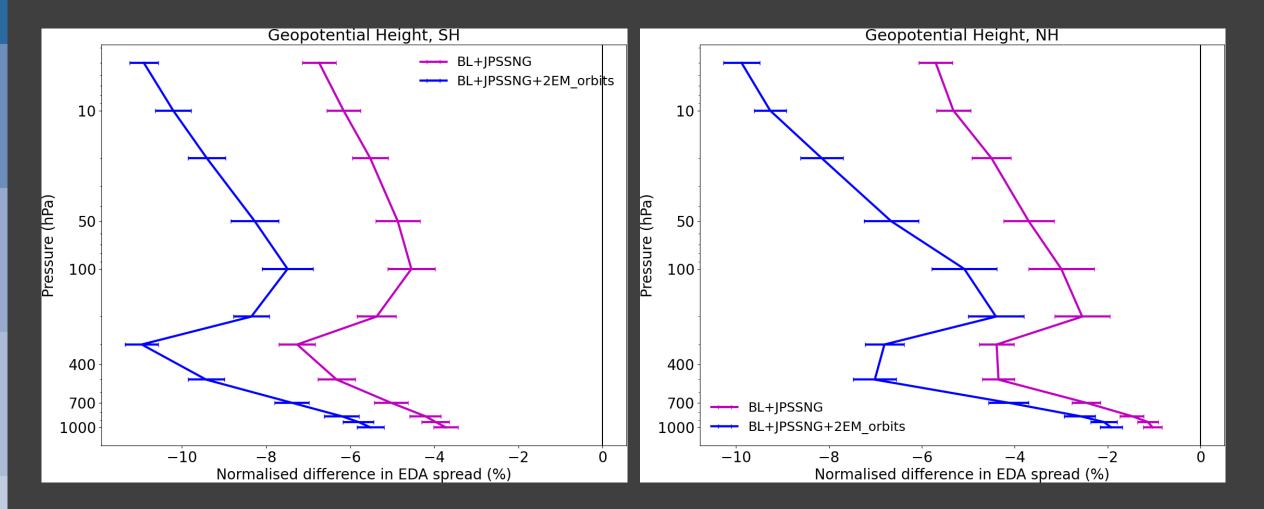
## System Setup for SMBA EDA impact study


- EDA System: IFS Cycle 48r1, MW in all-sky
- Baseline (BL) observing system:
  - All non-MW observations used operationally at ECMWF at the time
  - A reduced set of MW instruments: MW sounders from 2 Metop satellites and AMSR2, GMI, SSMIS (window channels only)
  - Excluded observations: MWHS-2 (from FY-3C and FY-4D) and Sounding channels from two SSMIS instruments
- EDA period: 1-30, June 2021
- EDA Scenarios:

| Scenario Name           | Observing system<br>other than MW<br>sounding | MW sounding<br>in 9:30 orbit | MW sounding in 13:30 orbit        | MW sounding<br>in 5:30 orbit | MW obs error<br>setting |
|-------------------------|-----------------------------------------------|------------------------------|-----------------------------------|------------------------------|-------------------------|
| BL                      | Full*                                         | Two Metop                    | -                                 | -                            |                         |
| BL+JPSSNG               | Full*                                         | Two Metop                    | Two SMBA                          | -                            | Ideal values            |
| BL+JPSSNG-50ghz         | Full*                                         | Two Metop                    | Two SMBA,<br>without 50 GHz       | -                            | Ideal values            |
| BL+JPSSNG-118GHz-229GHz | Full*                                         | Two Metop                    | Two SMBA,<br>without 118 &229 GHz | -                            | Ideal values            |

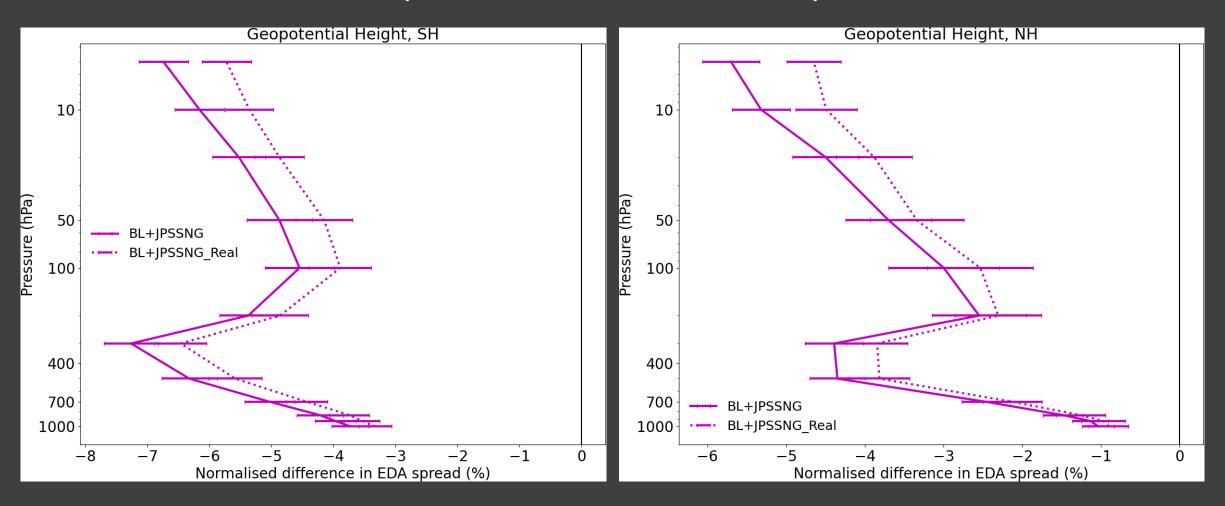





## SMBA and two denial scenarios



Key findings:


- 1) purple vs yellow The addition of the 118 & 229 GHz channels to 50 and 183 GHz gives a small benefit
- 2) purple vs red 50 GHz temperature-sounding channels are important to maintain

## Addition scenarios with more SMBA in the Early-Morning orbit



Key findings: We get the largest impact if we have the new sensor in the afternoon and early morning orbits

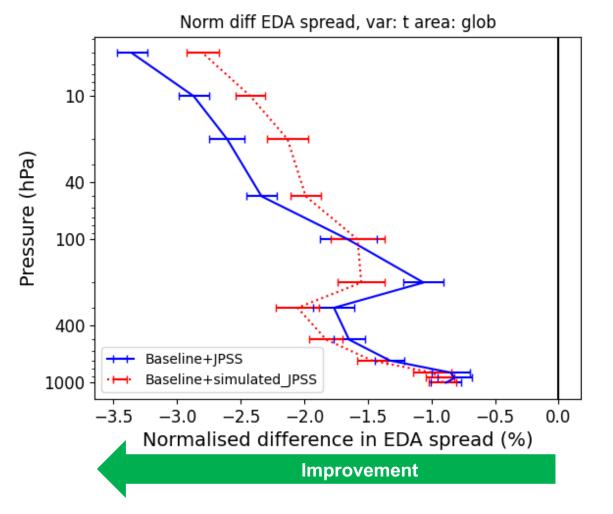
## SMBA Noise Sensitivity scenarios from afternoon orbit (Idealised vs Baseline)



Key findings: Strong sensitivity to noise—low noise performance is critical

## Summary & Future Plan:

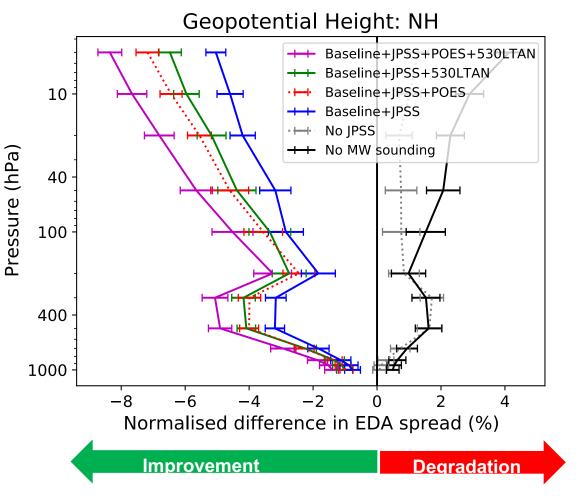
- NOAA is collaborating with CISESS and ECMWF to investigate the impact of the future microwave missions using ECMWF EDA method.
- SMBA EDA impact studies:
  - Expanded EDA study to 30 channels, adding Seven 118 GHz channels and One 229 GHz channel more than ATMS
  - Key Findings:
    - Adding 118 & 229 GHz to 50 & 183 GHz channels yields modest improvements
    - 50 GHz channels remain essential—118 GHz is not a full replacement
    - Strong sensitivity to noise—low noise performance is critical
    - Largest benefit when sensors cover both afternoon and early-morning orbits
- Future plan: EDA for hyperspectral microwave-sounding if available


## Back-up slides!!!



### Milestones-1: Similarity of simulated and real ATMS in EDA framework

| Scenario Name    | Observing system<br>other than MW<br>sounding | MW sounding in<br>9:30 orbit | MW sounding in 13:30<br>orbit           |
|------------------|-----------------------------------------------|------------------------------|-----------------------------------------|
| Baseline         | Full*                                         | Two Metop                    | -                                       |
| Baseline+JPSS    | Full*                                         | Two Metop                    | Two Real ATMS<br>(S-NPP, NOAA-20)       |
| Baseline+simJPSS | Full*                                         | Two Metop                    | Two simulated ATMS (S-<br>NPP, NOAA-20) |


The results show the performance is broadly similar.



## Milestones-2: EDA impact study for refurbished ATMS in 17:30 LTAN

#### **Key Findings:**

- The EDA analysis demonstrated the <u>incremental</u> <u>benefit of adding MW observations in the 17:30 LTAN</u>, provided the data quality is comparable to that of the S-NPP ATMS.
- Results align with previous findings, indicating that NWP models <u>have not yet reached saturation</u> in terms of MW sounder impact beyond the Metop and JPSS orbits.
- Findings are <u>consistent with real data from MWHS-2</u> on FY-3D in the early-morning orbit, which also showed a positive impact.



Ma, Z., N. Bormann, K. Lean, D. Duncan, E. Berbery and S. Kalluri, **2024**: Forecast impact assessment of a potential ATMS instrument in the early-morning orbit using the EDA method. *ECMWF Technical Memorandum*, 925, <u>https://doi.org/10.21957/59eb3a9b44</u>



## SMBA data simulation

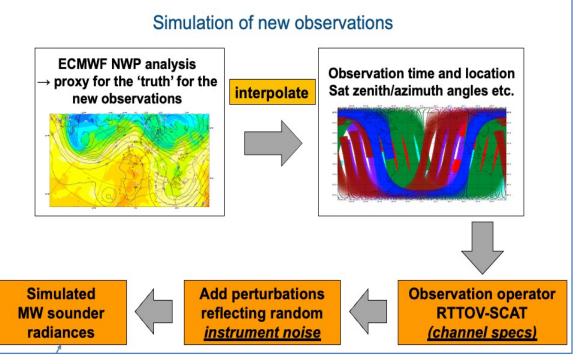
Coefficients for SMBA:

provided by NWP SAF

• Orbital parameter (sampling):

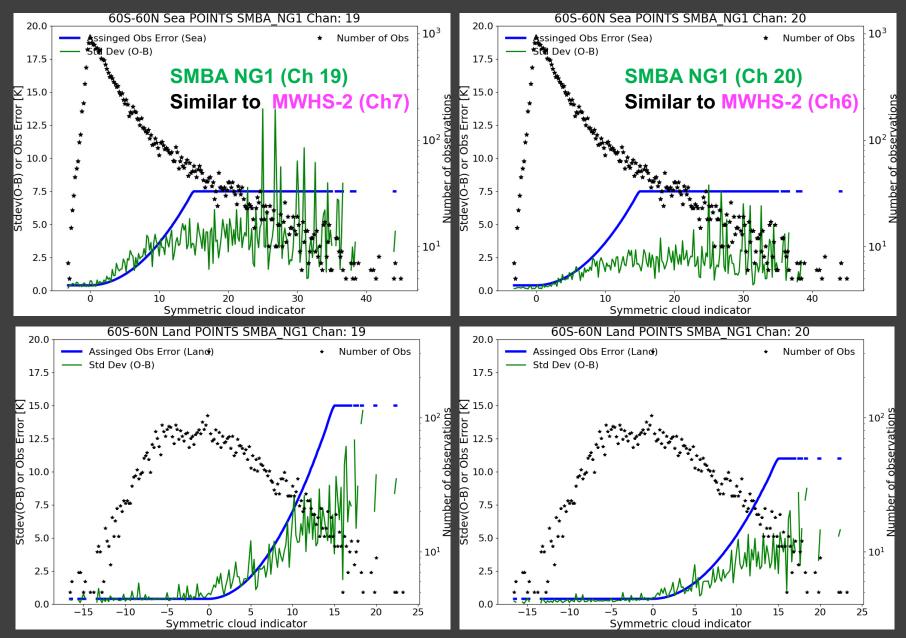
provided by EUMETSAT (thanks to Joerg Ackermann)

| Name     | Satellite identifier | Sensor  | Report Type | Orbit-sampling |
|----------|----------------------|---------|-------------|----------------|
| NG1_SMBA | A 1001               | SMBA=51 | 98001       | NPP            |
| NG2_SMBA | A 1002               | SMBA=51 | 98002       | N20            |
| NG3_SMBA | A 1003               | SMBA=51 | 98003       | NX1            |
| NG4_SMBA | A 1004               | SMBA=51 | 98004       | NX2            |

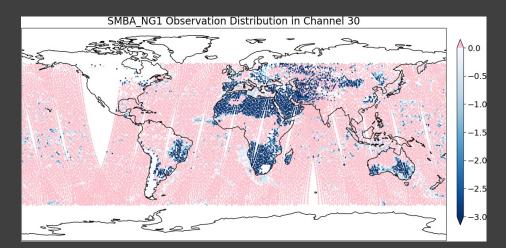

NPP: Suomi NPP ATMS simulation

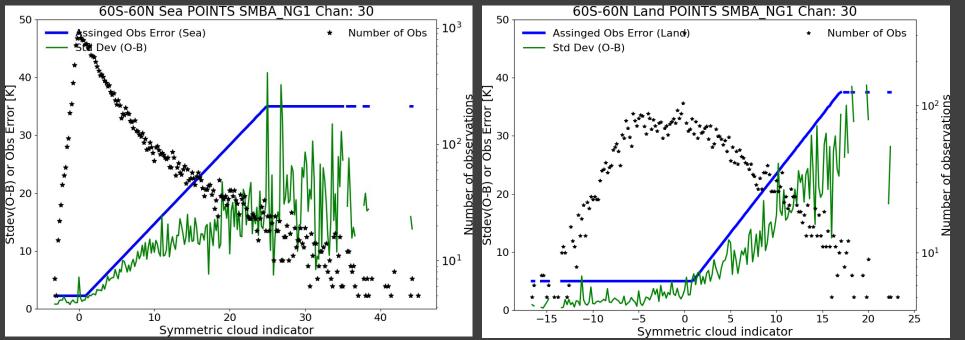
N20: NOAA-20 ATMS simulation

NX1: simulation of an ATMS on board a fictional satellite NX1 with 90 deg shift wrt. to S-NPP and an LTAN of app. 17:30 UTC

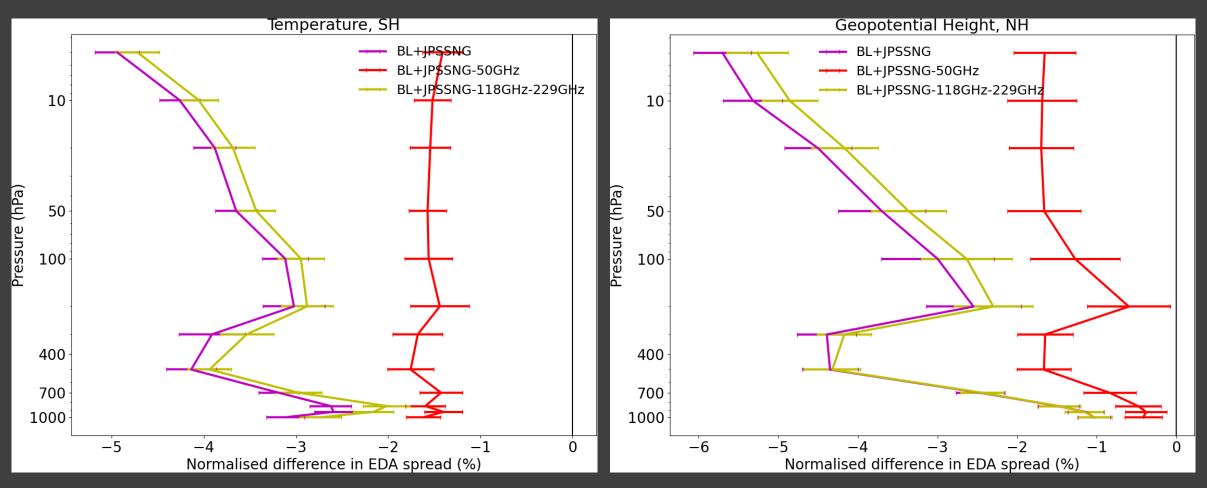

NX2: simulation of an ATMS on board a fictional satellite NX2 with 90 deg shift wrt. to NOAA-20 and an LTAN of app. 17:30 UTC







(From Katie's ESA report)

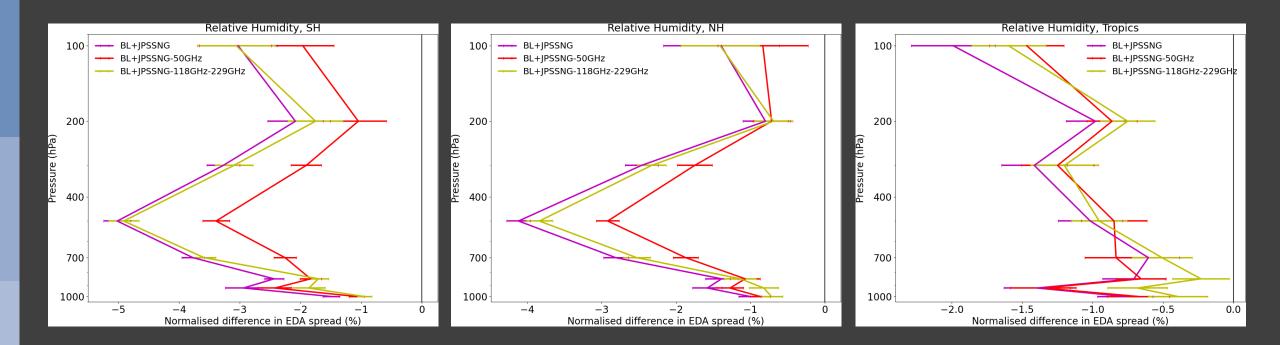
### 4D-Var exp: Assigned values with stdev(O-B) vs cloud-indicator (118 GHz)




### 4D-Var exp: Assigned values with stdev(O-B) vs cloud-indicator (229 GHz)






## SMBA and two denial scenarios (Temp)



Key findings:

- 1) purple vs yellow The addition of the 118 & 229 GHz channels to 50 and 183 GHz gives a small benefit
- purple vs red 50 GHz temperature-sounding channels are important to maintain

## SMBA and two denial scenarios (RH)



Key findings:

- 1) purple vs yellow The addition of the 118 & 229 GHz channels to 50 and 183 GHz gives a small benefit
- 2) purple vs red - 50 GHz temperature-sounding channels are important to maintain