JMA and JAXA

Kozo Okamoto^{*1}, Misako Kachi^{*2}, Kotaro Bessho^{*1}

Japan Meteorological Agency (JMA), Japan Aerospace eXploration Agency (JAXA)

ITSC-25, 8-14 May 2025, Goa, India

Japanese Earth Observation Satellites/Sensors

Climate Monitoring by GCOM-C (Global Change Observation Mission – Climate)

- ✓ Spatial/temporal changes
- ✓ Correlation among the observed variables
- \rightarrow Improvement of the ESM
- \rightarrow Improvement of prediction of the future global environment

EarthCARE (Earth Cloud Aerosol and Radiation Explorer)

- EarthCARE: Europe-Japan joint mission, launched in May 2024
- 3-D global distributions of cloud and aerosol to understand climate change
- JAXA and NICT provides <u>world's first satellite-based cloud vertical motion</u> by the Cloud Profiling Radar (CPR) with 94 GHz with Doppler Capability at 0.8 km spatial resolution.
 * NICT (National Institute of Information and Communications Technology)

CPR first images (27th June 2024)

The CPR onboard the EarthCARE satellite is the world's first spaceborne Doppler radar in the W-band (94 GHz

https://global.jaxa.jp/press/2024/06/20240627-1_e.html

Release of Level-2 products (17th March 2025)

https://www.satnavi.jaxa.jp/en/news/2025/03/17/10746/index.html

Release of Level-1 products (14th January 2025)

- JAXA has a long heritage of development and operation of space-borne precipitation radar
 TRMM (Nov. 1997 ~ Apr. 2015) and GPM (Feb. 2014~)
- In June 2023, JAXA's Precipitation Measuring Mission (PMM) Project Team was established on for the Spacecraft carrying the Ku-band Doppler Precipitation Radar (KuDPR)
 - Participation in NASA Atmosphere Observing System (AOS) mission.
 - Targeting launch is JFY2028. Preliminary Design Review (PDR) is scheduled in JFY2025.

- JAXA's KuDPR will focus on advanced observation of precipitation.
 - Doppler velocity observation & High sensitivity observation
- International collaboration with NASA AOS mission will bring us integrated understanding of Aerosol, Cloud and Precipitation processes.

13.6 GHz
 Doppler obs. mode Dense sampling obs. mode Normal scan obs. mode

KuDPR will be two-antenna system that adopts Displaced Phase Center Antenna (DPCA) approach (Durden et al. 2007, Tanelli et al. 2016) \rightarrow More accurate Doppler measurement

The Advanced Microwave Scanning Radiometer (AMSR) series

- The Advanced Microwave Scanning Radiometer series (AMSR-E, AMSR2, and future AMSR3)
 - Same local observation time and similar specification to achieve continuous observation +23 years
 - Launch: Aqua/AMSR-E May 2002, GCOM-W/AMR2: May 2012
 - Microwave channels of 6.9-89GHz enable to observe "waterrelated" geophysical parameters in all-weather
 - Observing SST and soil moisture in 30-50km spatial resolution by large (~2-m) diameter antenna
- New research products has been released in 2024~2025
 - Recalculation of updated SST (V4.11)
 - Sea Ice Motion Vector for Arctic (released)
 & Antarctic (coming soon)
 - High-resolution TB for Cryosphere studies

GOSAT-GW: Global Observation SATellite for Greenhouse gases and Water cycle

AMSR3

(Advanced Microwave Scanning Radiometer 3)

- Led by JAXA
 - Succeed AMSR series observations
 - Add new high-frequency ch for solid precipitation retrievals and water vapor analysis in NWP

Feature of the GOSAT-GW satellite with AMSR3 main reflector deployed

(Total Anthropogenic and Natural emissions mapping SpectrOmeter-3)

- Led by Japanese Ministry of the Environment (MOE) and National Institute of Environment Studies (NIES)
- Improve observation capability of greenhouse gases
 from GOSAT-2/TANSO-2
 - 2 imaging modes: wide mode (footprint 10 km, swath 911 km) and focus mode (3 km, 90km)
 - NO2 observation (0.4 μm), in addition to O2 (0.76 μm) and CO2 and CH4 (1.6 μm)

GOSAT-GW Satellite Specifications

Missi	on	AMSR3 (JAXA)			
Instruments		TANSO-3 (MOE/NIES)			
	Type	Sun-synchronous, Sub-			
	туре	recurrent orbit			
	Altitudo	666km, recurrent cycle			
	Annuae	3days (same as GOSAT)			
Orbit Local sun		13·30+15min			
	time at				
	ascending	(same as GCOIVI-VV)			
	Revisit				
	time	3 uays			
Satall	ito Macc	2.6 tons (including			
Saten		propellant)			
Designed lifetime		> 7 years			
Lours		To be launched on 24 June			
Launc	./1	2025 by H-IIA rocket			

GOSAT(2009~): The world's first spacecraft to measure CO2 and CH4 GOSAT-2 (2018~)

GOSAT-GW: AMSR3 and AMSR series

Aims of AMSR3

- Succeed AMSR series' observation of water-related parameters
- Respond to new user needs by hardware/software improvements

AMSR3 Major Improvements

- 1. Additional **166 & 183 GHz** channels for snowfall/water vapor
- 2. Additional 10.25 GHz channels with better NEDT for robust SST

Himawari-8/9 overview

- Launch in 2014 and 2016
- Switchover operational satellite from Himawari-8 to Himawari-9 on 13 Dec. 2022
- AHI: Advanced Himawari Imager
 - 16 band: 3 VIS, 3 NIR, 10 IR
 - 10-min full-disk, 2.5-min Japan area, 2.5-min target area
- HimawariRequest: Target area obs on request from NMHSs
 - 1,000 km x1,000 km, every 2.5 min
 - 22 NMHSs registration, 290 requests for TC, volcanic eruption, wildfire (as of 1 May 2025)
- Operational products: AMV, CSR, HCAI, AOT, Aswind

CSR: clear sky radiance HCAI: high-resolution cloud analysis information AOT: Aerosol Optical thickness Aswind: AMV-based sea-surface wind

Advanced Himawari Imager (AHI)

Communication antennas

solar panel

- User support:
 - https://www.data.jma.go.jp/mscweb/en/support/support.html

FY Satellite	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029
Himawari-8		M	lanı	La. Jfac	unc tur	h) ina	1		0	per	atio	nal]	[n-c	orbi	t sta	and	by	
Himawari-9						La	unc	h	Ir	1-or	bit	stai	ndb	у		Op	pera	atio	nal		

Himawari-10 overview

Schedule

- JFY2024: PDR (Preliminary Design Review)
- JFY2025: Contract for Ground Segment, Critical Design Review (CDR)
- JFY2028: Launch
- JFY2029: Start operation
- Payloads
 - Geostationary HiMawari Imager (GHMI)
 - Geostationary HiMawari Sounder (GHMS)
 - Data Collection System
 - Relays surface-based Data Collection Platforms (DCPs) data.
 - Radiation Monitors for Space weather (RMS)
 - Measure proton & electron flux in geostationary orbit, as a government furnished equipment by NICT (National Institute of Information and Communications Technology).

Location

Geostationary orbit at around 140.7 deg. E

Satellite Design

Spacecraft	MELCO standard DS2000 bus
Mass (approx.)	2.4 t (dry), 6.1 t (with propellant)
Size (approx.)	4 m x 3 m x 6 m (folded), 11 m (deployed)
Design life	≥ 15 years (mission period ≥ 10 years)
Communica tions	Ka-band: Mission data downlink Ku-band: TT/C uplink & downlink UHF-band: DCP uplink

Geostationary HiMawari Imager (GHMI)

L3Harris's new 18-band imager based on the same concept with its GeoXO Imager (GXI)

Observing sequence & band configuration changed from Himawari-8/9

mpro

Values in the tables show JMA requirements

	Observing Area (minimum coverage)	Interval
GHMI Observing	Full Disk	10 min
Area & Interval	Japan	0.5 min
	(EW 2500 km x NS 2000 km)	2.5 mm
ovement from mawari-8/9	Target Area1 (EW 1000 km x NS 1000 km)	2.5 min
	Target Area2 (EW 1000 km x NS 1000 km)	2.5 min
	Target Area3 (EW 1000 km x NS 1000 km	2.5 min
	Target Area4 (EW 1000 km x NS 1000 km)	2.5 min
	Target Area5 (*) (EW 1000 km x NS 500 km)	30 sec

	GHIVII Spectral band characteristics									
	Center Wavelength [µm]	Band width [µm]	Spatial resolution at nadir [km]							
	0.46 - 0.48	≤ 0.07	≤ 1							
VIS	0.54 - 0.56	≤ 0.05	≤ 1							
	0.63 - 0.65	≤ 0.12	≤ 0.5							
	0.85 - 0.87	≤ 0.06	≤ 1							
	1.375 - 1.385	≤ 0.04	≤ 2							
NIR	1.60 - 1.62	≤ 0.08	≤ 2							
	2.24 - 2.27	≤ 0.06	≤ 2							
	3.75 - 3.95	≤ 0.50	≤ 1							
	5.10 - 5.20	≤ 0.20	≤ 1							
	6.05 - 6.45	≤ 1.20	≤ 2							
	6.90 - 7.00	≤ 0.50	≤ 2							
	7.27 - 7.43	≤ 0.60	≤ 2							
IR	8.44 - 8.76	≤ 0.50	≤ 2							
	9.55 - 9.70	≤ 0.50	≤ 2							
	10.3 - 10.5	≤ 0.90	≤ 2							
	11.1 - 11.3	≤ 1.00	≤ 2							
	12.25 - 12.55	≤ 1.20	≤ 2							
	13.2 - 13.4	≤ 0.70	≤2							

Geostationary HiMawari Sounder (GHMS)

L3Harris's new infrared FTS sounder

Values in the tables show JMA requirements

GHMS Observing Area & Interval

Observing Area (minimum coverage)	Interval
Sounding Disk (LZA ≤ 60 deg)	60 min
Japan (EW 2500 km x NS 2000 km)	15 min [%]
Target Area (EW 1000 km x NS 1000 km)	15 min

Sounding Disk observation over Japan area is regarded as one of the "Japan" observations in the 60-min repeat cycle (i.e., three "Japan" observations to be conducted in 60 minutes).

GHMS Spatial & Spectral characteristics

Spatial (ho resolu	orizontal) ution	≤ 4.2 km
Spectral Coverage	LWIR	680 - 1095 cm ⁻¹ (14.7 - 9.13 μm)
	MWIR	1689 - 2250 cm ⁻¹ (5.92 - 4.44 μm)
Spectral R (FWł	esolution HM)	≤ 0.754 cm ⁻¹
Spectral S Dista	Sampling nce	≤ 0.625 cm ⁻¹

Future data plan of GHMI and GHMS

During the parallel operation

period, H-9 and H-10 data will be distributed in H-10

data format

GHMI

- Unified data format of NetCDF
 - $\blacksquare \leftarrow \mathsf{HSD} \text{ (Himawari Standard data), HRIT/LRIT, NetCDF for Him-8/9}$
- Transition plan of data distribution

Japanese Fiscal Ye	ar (JFY)	2026	2027	2028	2029	2030
(Ops. Satellite)	Himawari-9		Operationa	1	Parallel	Stand by
	Himawri-10				Operation	Operational
Himawari-9 data H-8/9 data format						
			Operationa	^Service	ended	
H-	10 data format		Sample data	a available D	istributed in parallel	
Himawari-10	data			S	Service start^	Operational

GHMS

- Disseminate Principal Component Analysis (PCA) data to NMHSs.
- No spatial resampling
- Details of stored data under consideration

Fundamental study on Principal Component Analysis (PCA)

- Investigate feasibility of GHMS PCA using NOAA-20/CrIS
- Reconstructed radiances (RRs) using 150 PC have as small residuals as instrumental noise
 - But relatively large residual in hot areas in the summer
- The majority of spectrum was reconstructed by two weeks of training data, regardless of the season

RR residual [K] (LW band)

Courtesy of S. Koyamatsu

Product development for GHMS

- Development is ongoing of vertical profiles of atmospheric variables, including wind vectors.
- Expect ML approaches to improve products by exploiting spatial and temporal information at the reasonable computational time
- Promising results of estimating meteorological variables from Himawari-8/9 using U-Net
- Plan to test more cases, apply for sounders, develop explainability and short-period training

Courtesy of K. Shimoji

Direct Readout Activity at JMA

- Direct Readout (DR) from LEO satellites since 1968
- The low latency products used for NWP and environmental monitoring (sea ice, volcanic eruption, Tropical Cyclone,,,)
- JMA processes DR data from Kiyose (JMA) and Syowa (NIPR*) and provides products to DBNet.
 - Mostly within 30 min
 - ATOVS and IASI products have been provided to DBNet regularly.
 - ATMS and CrIS products are provided to DBNet via DBRTN.
 - Data from Metop-SG series will be acquired at Kiyose station.

Station	Satellite	Sensor	Collect	Process	Provision for DBNet
	NOAA-18/19	ATOVS	1	1	✓
	S-NPP,	ATMS	1	1	🖌 (via DBRTN)
Kiyose	NOAA-20/21	CrIS	1	1	🖌 (via DBRTN)
	Moton R/C	ATOVS	1	1	✓
	метор-в/с	IASI	1	1	 ✓
	NOAA-18/19	ATOVS	1	1	1
Cuerto	S-NPP,				
Syowa	NOAA-20	ATIVIS	~		
	Metop-B/C	ATOVS	1	1	✓

Time period between Observation and Receipt of each Data

Backup slides

A-decade-long GHG observation by GOSAT series Greenhouse gases Observing SATellite (GOSAT) & GOSAT-2

Global CO₂ concentrations observed by GOSAT and GOSAT-2, CH₄ and CO (Feb. 2024)

2009-2024 seasonal variation and year-to-year increase of global CO_2 observed by GOSAT.

GOSAT-GW: TANSO-3 and TANSO series

Reference: https://www.env.go.jp/content/000130091.pdf, https://gosat-gw.nies.go.jp/en/index.html, https://www.satnavi.jaxa.jp/files/project/gosat-gw/en/

OSSE for Himawari-10

- Before determination of Himawari-10/GHMS at JMA, we conducted OSSEs for Geobased hyper-spectral infrared sounders (GeoHSS) to discuss a Himawari-10
 - Pseudo-obs (equivalent MTG/IRS) simulated from ERA5
- Results of global and regional data assimilation experiments in several cases
 - Assimilate clear-sky radiance in global system and T/H-profiles in regional system
 - Improved forecasts of large scale field and TC track
 - Improved forecasts of moisture flux over the ocean, rainfall statistics and heavy rain bands
 - Temporal frequency reduction (1h to 3h) lessened the impact but still improved especially in SH

