

Overview of the EUMETSAT operated missions and their applications

Bojan R. Bojkov & the Remote Sensing and Products Division EUMETSAT

ITSC-25, 12 May 2025

EUMETSAT missions – current and future

Geostationary Programmes					TG-S Ima	5-12 Jery
Mandatory	Meteosat 2006	MSG-4 / In-Orbit 5 2013 Prime Sa	Meteosat-11 Im Storage 2016 De Itellite 2018	agery 20 c. 2022	unding 2021	
Programmes						
Programmes	Metop-B 2013	Metop-C		Metop-SGA Sounding & Imagery 2025	Metoc SGB Miccowave Imagery.	
Optional and Third Party Programmes	Sentinel-3A 2016					
(incl. Copernicus)	JASON-3 2016	Sent Sent	Inel-38 JASON-CS/ SENTINEL-6. Sent 2021 2025	inel-5 etop-SG A Sentinel-4 JASC on MTG-S 2025 2025	DN-CS/. CO2M TINEL-6b 2027	suntinel-3C 2027

EUMETSAT's primary role remains support to NWP

www.eumetsat.int

Hurricane Dorian (September 2019)

Metop-C: 2 September 2019

Cloud tops (ABI)

3D Winds from IASI

- Based on the operational IASI Level 2 products: <u>All-sky</u> water vapour, ozone and temperature profiles
- Dual satellite operations; 29 products per day and per area (NH and SH)
- High-latitude regions (polewards of 45°)
- Troposphere and low stratosphere; 19 layers (from 10 to 1000 hPa)
- 3D wind swath: ~1200km
- Spatial binning strategy implemented to reduce number of profiles, reduce the variance and limit problem of spatial correlation (Super-pixels ~100x100km2)
- Specific BUFR template designed

IASI 3D Wind Product (v1) - Potential for NWP application

- O-B speed biases (solid line) and RMS (dashed line) profiles of IASI 3D winds against ECMWF forecast:
 - All the wind vectors (T, W, O₃)
 - Filtered on the vector difference against forecast wind (vd < 10 m/s)
 - Shaded zone shows the ECMWF variability inside the binning area
- After cut-off at 10 m/s for O-B:
 - Bias is close to zero and RMS < 4 m/s
 - Speed STD within the box comparable to ECMWF model field variability
 - 40% of the wind vectors left
 - Statistics consistent on the vertical ranges, however a bit larger at low (P>850 hPa) and very high levels (P<150 hPa).

ITSC-25, Goa, India, 12 May 2025

6

but Earth system observations are of increasing importance

www.eumetsat.int

24 hours of MTG/FCI: Canadian wildfires reaching the Iberian peninsula (June 2023), 10 min steps

ITSC-25, Goa, India, 12 May 2025

EPS-SG/3MI preparations: Combining spectral, directional and polarisation

www.eumetsat.int

All aerosol types can be captured (from HARP on NASA/PACE)

- high ability to observe fine particles (asset of polarimetry)
- but also desert dust, volcanic ash, pollution... combined with spectral and directional

www.eumetsat.int

- COWa: development of TCWV retrievals using Sentinel-3/OLCI NIR channels
- For future evolution of the EPS-SG METimage product
- Used in NWP assimilation at the MetOffice since Spring 2021

 improvements in the tropics
 hydro/dynamical cycle

https://www.eumetsat.int/COWa

Programme proposal: EPS-Sterna

- EUMETSAT Polar System Sterna will constitute EUMETSAT contribution to the realisation of the WIGOS Vision 2040
- EPS-Sterna, "identical" to ESA's AWS to launch shortly, will complement the observations from the EUMETSAT Polar System (EPS-SG)/Microwave Sounder (MWS) mission, from the NOAA JPSS and QuickSounder programmes as well as from the CMA FY satellites.
- EPS-Sterna passive microwave instruments will enable the retrieval of atmospheric temperature, humidity profiles and cloud information with frequent revisit time.
- It will be a global mission expected to improve significantly the accuracy of both global and regional NWP models.
- It will contribute to Nowcasting applications at high latitudes through an increase in the frequency of microwave observations.
- It will contribute to climate monitoring by adding to the existing record data with increased spatiotemporal sampling.

Programme proposal: EPS-Sterna (ii)

Constellation architecture:

- 3 Sun Synchronous orbits at 595 km altitude Inclination: 97°-98°; LTDN 03:30, 07:30, 11:30 complementary to EPS-SG and JPSS orbits
- Repeat cycle per individual satellite: 9 days ۲
- Number of satellites of initial full constellation: 6
- 2 Satellites per each orbital plane phased at 180°
- A total of 20 satellites will be needed to cover the 13 years mission lifetime – two of them are considered spares

Constellation performance (time to achieve 90%) coverage):

- EPS-Sterna only: 3.1 4.7 hours
- EPS-Sterna + EPS-SG + JPSS: 2.4 3.8 hours

Mean time between observations (with 6 satellites): 20 min-3 hours

NB two different satellite solar panel configurations will be used across the three different orbital planes.

18:00 LT 13:30 LTAN JPSS orbit 03:30 LTDN Sterna

00:00 LT

FY-3

Copernicus Imaging Microwave Radiometer - CIMR

Copernicus Imaging Microwave Radiometer - CIMR

www.eumetsat.int

Frequency band	L	С	X	K	Ка		
Relevant ECVs	Salinity	Sea surface winds & temp.		Water vapour, cloud & rain			
Allocated band [GHz]	1.4 <i>-</i> 1.427	6.425– 7.250	10.6- 10.7	18.6- 18.8	36-37		
Centre frequency [GHz]	1.4135	6.925	10.65	18.7	36.5		
Footprint size [km]	<60	≤15	≤15	≤5.5	<5 (goal=4)		
L1b Radiometric resolution [K] NEΔT	≤0.3	≤0.2	≤0.3	≤0.4 (goal: ≤0.3)	≤0.7		
Polarisation	Full Stokes						
Swath width	>1900 km						
Observation Zenith Angle [deg.]	52.0 ±1.0	55.0 ±2.0					

CIMR-A: Q4/2029 CIMR-B: ~2035 CIMR-C (TBC): ~2042

ITSC-25, Goa, India, 12 May 2025

Next challenges for future EUMETSAT mission

www.eumetsat.int

- Foresight "exercise" to frame the next generation LEO and GEO missions has begun with key experts form around the globe
- Areas under discussion target the continuation of measurables and the key environmental applications/service areas (to be addressed in the user consultation process in phase 0-A) → we are clearly moving towards seamless Earth System observations
- A series of foresight workshops are planned at the EUMETSAT User Conference next September in Lyon, and in Darmstadt in October 2025.
- Current planning agreed with Member States:
 - Meteosat 4th Generation (M4G) definition phase will start in ~2028
 - EPS Third Generation (EPS TG) definition phase will start in ~2032

More to come from EUMETSAT in ITSC-26 and ITSC-27 \rightarrow ITSC recommendations will be considered

www.eumetsat.int

https://user.eumetsat.int/data-access

ITSC-25, Goa, India, 12 May 2025