

IASI-NG : OVERVIEW L1 Processing Performances

QUENTIN CEBE . IASI-NG SYSTEM PERFORMANCES MANAGER

PIERRE RIEU ANTOINE PENQUER FRANÇOIS BERMUDO

CENTRE NATIONAL D'ÉTUDES SPATIALES (TOULOUSE, FRANCE)

ITSC 2025

May 08 > 14 2025 Goa, INDIA

RÉPUBLIQUE FRANÇAISE Liberté Egalité Paternité

IASI & IASI-NG MISSIONS

IASI

RÉPUBLIQUE FRANÇAISE

Liberté Égalité Fraternité

cnes

- 3 instruments aboard 3 satellites
 - MetOp A/B/C 2006/2012/2018
 - 18 years of mission and counting
 - MetOp-A decommissioned in 2021
 - Continuous spectrum of 8461 channels

 $| \land \subseteq | - \square \subseteq$

IASI-NG

- 3 instruments aboard 3 satellites
 - MetOp-SG A 1/2/3 2025/2032/2039
 - Same number of products per day
 - Same pixel sizes
 - Same spatial sampling
 - Same wavelenght coverage

RÉPUBLIQUE FRANÇAISE

Égalité Fraternit cnes

MAJOR REQUIREMENTS

Afocal and Imaging Telescopes

Mertz Interferometer

Focal Plane : 4 detectors for 4 spectral bands /16 sounding pixels per detector

5 metrology lasers:

sépublique

Égalité Fraternité

FRANCAISE

cnes

- 1 central metrology to give the Optical Path Difference constant triggering
- 4 lateral lasers to monitor in real time the pupil effects (tilt, focus and astigmatism) for correction through on ground processing

			i i i i i i i i i i i i i i i i i i i
GEOMETRY	SOUNDER PIXEL SIZE	~12 km	SAME AS
	SPATIAL SAMPLING	~25 km	
	GEOLOCATION ERROR	0.5 km	
SPECTRAL	BAND	645 cm-1 to 2760 cm-1	
	RESOLUTION	0,25 cm⁻¹	
	SAMPLING	0,12 cm ⁻¹	2 TIMES BI
	CALIBRATION ERROR	d σ/σ= 5.10 ⁻⁷	
RADIOMETRY	CALIBRATION ERROR	0,25K @ 280 K	
	NEDT	NedT ~0.1 K to 0.4 Kwithin spectrum	

MAIN CHARACTERISTICS

ODECIEICATIONS

SWATH	~ 2000 KM	
FOR	+/- 3°	
PUPIL DIAMETER	~ 90 MM	
ATA MAGNIFICATION	2.3	
MAXIMUM OPTICAL PATH DIFFERENCE	4,2 CM	
ACQUISITION DURATION	~730 MS	
SCAN LINE DURATION	15.6 s : 14 EARTH VIEWS + 1BB + 1CS	
CO-REGISTRATION	INTEGRATED IMAGER	
SPECTRAL CALIBRATION	FABRY PEROT SOURCE	
	/	

ETTER

L1/SOUNDER PROCESSING

RÉPUBLIQUE

FRANÇAISE Liberté Égalité

Fraternité

cnes

SPECTRAL CALIBRATION

ISRF estimation is a mix of measurement and modelisation

5 lasers : dynamic Z4 information during each and ent science TM INA-TMI every acquisition L1CPOP-OGP-ISRF-EM u₃,v₃ SAS estimation METFM Coupled with an instrument model to translate the ISRf value to each wavenumber ZPDME METIN u₄,v₄ Pupil plane OGP-IMAGE - GEOLO Doppler speed SASFE SPC = Spectrum Coefficie ITF = Interferogramm L1CPOP-OGP-ISRF-EM MET = Metrologies ZPD = Index of the Zero Path Difference Spectral shift estimation (in-line) COEFI SAS = Self Apodisation Sampled function Re-estimation of the instrument coefficients using T = Temperature slope, offset = radiometric calibration coefficies HIFTCOL SHIFTEV calibrated data on-flight E OGP-IMAGE - GEOLO JSE_L1CPOP_SPECTRAL_LAW = True Pixel lat, lon AUX SOIB AUX ATM lear sky fraction, sea fraction

Asynchronous with the rest of the processing

Z₃

z

Ν

Z2,0

u2, V2

Wavehont

Z₁

 $\phi u_1, v_1$

O.

v

plane

-RÉPUBLIQUE

Écalité Fraternite

FRANCAIŠE Libert

RADIOMETRIC CALIBRATION

Radiometric calibration is the same as IASI

- 1 acquisition of cold and hot views every 14 Earth View acquisition
- Temporal smoothing to reduce noise

- Internal black body is maintained at 300K
- 2 outside views to acquire the cold reference
 - Nominal view for normal acquisitions
 - One additional view for moon avoidance

Égalité Fraternitë

PERFORMANCES VERIFICATION

- Performance verification is done in two steps
- TVAC for assessment of spectral and radiometric fine performances
 - 2 external warm black bodies and 1 cold black body for radiometric performances
 - 4 lasers for Instrument Spectral Response (+spectral calibration stability)
 - Gas Cell (+cold black body) for spectral calibration
 - Cold black body in front of Fabry Perot view
- Ambient test for geometric performances (LOS, IPSF, crosstalk)
 - Warm black body and collimator OGSE

AMBIENT TEST SET-UP (COURTESY OF AIRBUS)

RÉPUBLIQUE

Égalité Fraternit

FRANCAIŠE

cnes

SHAPE ERROR INDEX

ISRF shape is measured against a reference ISRF

4 lasers

• Middle channel of each band

Laser test spectra with laser (black) without (blue) and background removed (red)

$$\varepsilon = \int_{-\Delta v_{ISRF}}^{\Delta v_{ISRF}} \operatorname{Re}\left[ISRF_{2}(v - v_{c_{2}}, v_{0})\right] - \operatorname{Re}\left[ISRF_{1}(v - v_{c_{1}}, v_{0})\right] dv$$

SPECTRAL SHIFT

Gas cells setup to calibrate the spectral shift on spectral lines

Pixel field of view projected onto the CAG (courtesy : ADS)

cnes

RÉPUBLIQUE FRANÇAISE

Liberté Égalité Fraternité

- Known concentration and pressure
- Refraction index modelled on all 4 bands at once

$$\frac{(1+\alpha).\sqrt{n(\sigma)^2 - (\vec{r}_{field} \wedge \vec{N})^2} - (\vec{r}_{field}.\vec{N})^2}{(1+\alpha).\sqrt{n(\sigma_{met})^2 - (\vec{r}_{field}^{met} \wedge \vec{N})^2} - (\vec{r}_{field}^{met}.\vec{N})^2}$$

$$n(\sigma)^{2} = A + \sum_{i=0}^{4} \frac{B(i)}{1 - C(i)^{2} \times \sigma[\mu m^{-1}]^{2}}$$

0 IASI-NG

SPECTRAL SHIFT

Égalité Fraternité

The complete performance however is estimated by **analysis and simulation**

Using contributions from **doppler residual**, algorithm error, refraction index residual, reference precision, stability measurements

RADIOMETRIC NOISE AND BIAS

Radiometric characteristics are measured with calibrated Black Bodies of various temperatures

- Verification temperature range from 217K to 310K
- Evaluation of instrument noise and calibration bias
 - Including processing noise

Égalité Fraternite

For the complete picture, equivalent radiometric errors are simulated • using spectral performances values (shape, shift, crosstalk, stability, ...)

OGSE sur les vues Terre

Courtesv : ADS

SIOV/CALVAL GLOBAL OVERVIEW

FRANCAIŠE

cnes

Libert

Égalité Fraternité

RÉPUBLIQUE FRANÇAISE

Liberté Égalité Fraternité

THANK YOU

Quentin.Cebe@cnes.fr