

Perturbations of all-sky microwave radiances forward operator specifications within the Ensemble of Data Assimilation system of Météo-France

Mary Borderies¹, Philippe Chambon¹, Loïk Berre¹, Nicole Girardot¹, Hélène Dumas¹

¹ CNRM, Météo-France/CNRS, Toulouse, France

mary.borderies@meteo.fr

May 12, 2025 - International TOVS conference

@ santiagoborja.com

Motivation

Assimilation of microwave radiances in the global NWP models of Météo-France

- $\rightarrow\,$ Use of the direct allsky assimilation route of ECMWF (Geer et al. 2014) for MHS, MWHS-2, GMI and AMSR-2
- $\rightarrow\,$ Use of a single particle shape (e.g. sector snowflake, Liu 2018) for all meteorological situations and geographical areas

Motivation

Assimilation of microwave radiances in the global NWP models of Météo-France

- $\rightarrow\,$ Use of the direct allsky assimilation route of ECMWF (Geer et al. 2014) for MHS, MWHS-2, GMI and AMSR-2
- $\rightarrow\,$ Use of a single particle shape (e.g. sector snowflake, Liu 2018) for all meteorological situations and geographical areas

Example of first-guess departure for MHS (channel 5) using two different particle shapes :

- → Larger first guess departure
- → Smaller first guess departure

 $\rightarrow~$ Large single scattering property uncertainties

How to account for single scattering property uncertainties in an Ensemble of Data Assimilation (EDA) system?

- \rightarrow Take into account these uncertainties in a coupled "EDA \rightleftharpoons deterministic model".
- $\rightarrow\,$ Add perturbations into the EDA, which is known to be under-dispersive.
- \rightarrow Work initiated by Barreyat (2021) with GMI only, extended here to the full constellation.

The experimental setup

2 Impact on the EDA spread

3 Impact on the deterministic model ARPEGE

The Ensemble Data Assimilation system of Météo-France (AEARP)

- Ensemble of 50 members running a 4D-Var at 100 km.
- Provide flow-dependent background error matrix for the deterministic model
- SSPs specified using the Sector Snowflakes assumption of the Liu (2008) database

Perturbation of microwave radiances forward operator assumptions in the AEARP

PertH : **Random selection** of the single scattering properties **for snow** in each member between Thin plate, Rosette 3-Bullet and Sector Snowflakes

Experimental setup

Two fully coupled experiments "EDA \rightleftharpoons deterministic model" in which only the EDA is changed

Experimental setup

Two fully coupled experiments "EDA \rightleftharpoons deterministic model" in which only the EDA is changed

 $\rightarrow\,$ Period of study : 2-month period from 1st of January 2023 - 4rd of March 2023

Impact of *pertH* on the EDA spread

Impact of *pertH* on the EDA spread

- PertH allows to increase the EDA spread by \approx 15 % in the Southern hemisphere on the humidity field and by \approx 23 % on the other variables.
- Larger impact in the southern hemisphere, then in the Tropics, and finally in the northern hemisphere.

Relative Differences of the standard deviation of first guess departures : SEVIRI

Relative Differences of the standard deviation of first guess departures : SEVIRI

Relative Differences of the standard deviation of first guess departures : ATMS

Relative Differences of the standard deviation of first guess departures : $\ensuremath{\mathsf{AMVs}}$

100

- ightarrow Negative impact at pprox 700 hPa
- ightarrow Positive impact below pprox 300 hPa

Medium-range impact : comparisons against ECMWF analyses

Medium-range impact : comparisons against ECMWF analyses

ightarrow Negative impact on the humidity at pprox 850 hPa

 \rightarrow Larger impact in the southern hemisphere up to 4 days ahead

Conclusions and Perspectives

The perturbation of microwave radiances forward operator assumptions within the EDA system :

- $\rightarrow\,$ Allows to increase the EDA spread.
- $\rightarrow\,$ The comparisons against ATMS and AMVs observations indicate a neutral to a beneficial impact on the +6h forecasts.
- $\rightarrow\,$ The comparisons against ECMWF analyses indicate beneficial impact on the medium range forecasts (similar results against conventional observations)
- → PertH has been implemented in our current parallel suite (cy48t1op1)

Perspectives :

- Apply similar perturbations on other microphysical parameters (e.g. rain PSD, etc..).
- Apply the same methodology to other observing system (on-going work with GNSS-RO forward operator).
- Apply the similar perturbations within the EDA system of the km-scale NWP model AROME.