
Develop / Deploy with Singularity
my pattern and practice

https://www.ssec.wisc.edu/~jimd/Singularity/Singularity_Pattern_Practice.pdf

1

In the past year I have delivered 3 CSPP packages in
Singularity containers.

CSPP_MIRS was the most recent so I am going to use that as an
example. It is a command line interface to a science algorithm
(MiRS) from NOAA.

I have started to use Singularity for in-house projects too. Anything
that I am likely to hand over to someone else to run, or that I want to
move from machine to machine, is now a candidate for the
Singularity treatment.

OLD WORLD

MiRS was delivered to SSEC by having the NOAA POC untar the package on an
SSEC machine with the module system, they would load the necessary modules
(compiler, libraries), build the system and run some test data through it.

I’d copy the system over to my user space on the same machine, verify that I
could build and run the same test data, then set about writing a wrapper script to
run the system in a Direct Broadcast context. Then I’d package up as a tarball
the pre-compiled system, with all required support libraries and utilities, and go
test it on several other machines running the target OS. (I’d also make a test
package of Direct Broadcast data to go with).

Hopefully, when I run on the test machines, I do not find that I am missing a
library or utility. If all good, other people will test it, I will write an installation
guide, the package goes into operations here, and a few weeks later we
announce its availability to CSPP users around the world.

NEW WORLD (note-to-self: change in FS visibility)

MiRS was delivered to me the same way - maybe we will move to providing a
build container to NOAA POC - but this time it was the same as OLD WORLD.

I’d verify the same way, but then I’d set about rebuilding in a containerized
environment - that’s what I’ll run through now.

2

The page at left is lifted from the
project documentation on gitlab.

It is sometimes useful for me to
make a sandbox to start with,
especially if I am unsure just what
software I need in the container and
I want to tinker with it - but I don’t
think it is helpful to get side-tracked
by that here.

The test & verify steps are
important to the specific enterprise
of making CSPP software for
delivery, with test data to verify
correct installation, but again not
central to the theme of this talk.

I am just going to run through
download, build, & package.

Then I’ll take a look at how I invoke
the package via a bash script that
has a little bit of work to do upfront -
mainly to do with filesystem visibility
from within the container.

3

[jimd@leo CSPP-S_MIRS]$ tree --charset==ASCII -L 3
|-- build.bash
|-- clean.bash
|-- download.bash
|-- package.bash
|-- README.md
|-- resource_dir
| |-- bin
| | |-- h5diff
| | |-- h5dump
| | |-- h5ls
| | |-- h5repack
| | |-- h5stat
| | |-- nagg
| | |-- ncdump
| | |-- ncgen
| | |-- rename
| | `-- wgrib2
| |-- data
| | `-- cspp_test
| |-- mirs_v11r8_r110821321_20211117
| |-- mirs_v11r8_r110821321_oper_20211117.tar.gz
| |-- rocker-geo-mirs.def
| |-- scripts
| | |-- bind_wrangle.R
| | |-- cspp_mirs_env.sh
| | |-- dirlist_mirs.R
| | |-- mirs_srcdiff.R
| | |-- mirs_verify.R
| | |-- run_mirs.bash
| | |-- run_mirs.pl
| | `-- sing_test.bash
| `-- tarfiles
| |-- hdf-4.2.15.tar.gz
| |-- hdf5-1.10.6.tar.gz
| |-- hdf-eos2-3.0-src.tar.gz
| |-- netcdf-c-4.7.3.tar.gz
| `-- netcdf-fortran-4.4.5.tar.gz
|-- sandbox.bash
|-- test.bash
`-- verify.bash

[jimd@leo CSPP_MIRS_3_0]$ tree --charset==ASCII -L 2
.
|-- bin
| |-- h5diff
| |-- h5dump
| |-- h5ls
| |-- h5repack
| |-- h5stat
| |-- nagg
| |-- ncdump
| |-- ncgen
| |-- rename
| `-- wgrib2
|-- docs
| |-- MIRS_Algorithm_Theoretical_Basis_Document.pdf
| |-- MIRS_Delivery_Memo.pdf
| |-- MIRS_Interface-Control-Document.pdf
| |-- MIRS_Operations_Manual.pdf
| |-- MIRS_ProcessControl_and_ProductionRules.pdf
| |-- MIRS_System_Description_Document.pdf
| |-- MIRS_System_Maintenance_Manual.pdf
| |-- MIRS_Users_Manual.pdf
| |-- NOAA_Products_MSPPS2MIRS_Transition.pdf
| `-- Performances
|-- mirs.sif
|-- scripts
| |-- bind_wrangle.R
| |-- cspp_mirs_env.sh
| |-- dirlist_mirs.R
| |-- mirs_srcdiff.R
| |-- mirs_verify.R
| |-- run_mirs.bash
| |-- run_mirs.pl
| `-- sing_test.bash
`-- version.txt

This is what I start with…

This is what I end with…

 ~6GB untarred

 ~2GB squashfs

4

#!/bin/bash
#
Top-level script to download some requirements to build a version of MiRS
for distribution to users with a recent version of Singularity/Apptainer
#
Execute this script in the directory where you found it:
#
./download.bash
#

exit when the first non-zero exit status is encountered
set -e

test for singularity
resource_dir/scripts/sing_test.bash

print every command we run
set -v

make a download directory
mkdir -p download_dir/tarfiles
cd download_dir

copy tarfiles needed for support libraries
rsync -a ../resource_dir/tarfiles .

need to be able to bail and carry on now
set +e

create the .sif used for both build & runtime
sudo singularity build mirs.sif ../resource_dir/rocker-geo-mirs.def

Done
echo Done.

These are HDF &
NetCDF libraries

This is the singularity build command
and container definition file - note sudo

Initially I had this as part of the
build step (that compiles the
algorithm package).

I prefer to have this separate a)
so that I don’t risk breakage using
a new image on dockerhub that I
did not need to fetch and b) so
that I can continue to work the
next steps disconnected from
internet.

Clearly the .def file is crucial.

5

Bootstrap: docker

From: rocker/geospatial

%files

 tarfiles /opt

%post

 # Install system packages
 apt-get update
 apt-get --assume-yes install tree lftp rsync bison byacc flex puppet rename ripgrep
 apt-get --assume-yes install imagemagick >/dev/null

 # Install extra R packages
 install2.r --skipinstalled getopt sodium Cairo magick cowplot akima \
 ggnewscale kableExtra flexdashboard DT smoothr

 mkdir -p /opt/build

 # For gcc/g++/gfortran 10.0 you may need to uncomment
 # export FCFLAGS="-w -fallow-argument-mismatch -O2"
 # export FFLAGS="-w -fallow-argument-mismatch -O2"

 # Install hdf4 from source
 cd /opt/build
 tar -xzf ../tarfiles/hdf-4.2.15.tar.gz
 cd hdf-4.2.15
 ./configure --prefix=/usr/local --with-szlib --enable-netcdf=yes
 make clean && make -j 16 && make install

 # Install hdfeos from source
.
.
.

 # Clean up & exit
 cd /opt
 rm -rf build
 rm -rf tarfiles
 touch I_AM_SINGULARITY

%environment

 export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/lib

Why rocker/geospatial? I do not have a good answer for that - the
scripting for this project is in Perl. I think it just had a compiler set that
verified the MiRS test data to machine precision and I like having R tools
around for scripting. The .sif created is pretty big and most of it I do not
need - so one could argue it is a bad choice. Base distro is Ubuntu.

So I have cut out some
bits to save space here

6

Bootstrap: docker

From: centos/s2i-base-centos7

%files

 tarfiles /opt

%post

 # Install packages (centos-release-scl is already installed)
 yum -y install tree tcsh perl-core lftp zip bison byacc flex devtoolset-7-gcc*

 mkdir -p /opt/build

 # Install kai from source
 cd /opt/build
 tar -xzf ../tarfiles/kai-1.11.tar.gz
 cd kai-1.11
 ./configure
 make
 make install

 # Install hdf4 from source
 cd /opt/build
 tar -xzf ../tarfiles/hdf-4.2.15.tar.gz
 cd hdf-4.2.15
 echo ./configure --prefix=/usr/local --enable-netcdf=yes > build-unix.sh
 echo 'make clean && make && make install' >> build-unix.sh
 chmod 755 build-unix.sh
 scl enable devtoolset-7 ./build-unix.sh

 # Install hdf5 from source
 cd /opt/build
 tar -xzf ../tarfiles/hdf5-1.10.6.tar.gz
 cd hdf5-1.10.6
 echo ./configure --prefix=/usr/local --enable-fortran --enable-unsupported > build-unix.sh
 echo 'make clean && make && make install' >> build-unix.sh
 chmod 755 build-unix.sh
 scl enable devtoolset-7 ./build-unix.sh

Here is the start of a Singularity .def file
from a different project.

I have used “devtoolset” to choose the compiler
set needed for this algorithm delivery.

7

Bootstrap: docker

From: centos/s2i-base-centos7

%files

 compiler_pkg /opt

%post

 # Install packages to run ACSPO build
 yum -y install tcsh perl-core lftp bison byacc flex ftp

 # Install packages that I find helpful
 yum -y install tree zip

 # make directories for compiler and workspace
 mkdir -p /opt/intel /opt/work

 # Install Intel compiler suite
 cd /opt/work
 tar -xzf ../compiler_pkg/parallel_studio_xe_2019_update5_cluster_edition.tgz
 cd parallel_studio_xe_2019_update5_cluster_edition
 sh ./install.sh --ignore-cpu -s /opt/compiler_pkg/silent.cfg_2019.0.5
 cd ..
 rm -rf parallel_studio_xe_2019_update5_cluster_edition

 # Clean up & exit
 cd /opt
 rm -rf compiler_pkg
 touch I_AM_SINGULARITY
 history -c

%environment

 export CC=icc
 export CXX=icpc
 export F77=ifort
 export FC=ifort
 export F90=ifort
 export F9X=ifort
 export F95=ifort
 export INTEL_HOME=/opt/intel/19
 export PATH=$PATH:$INTEL_HOME/bin
 export INTEL_LIBS=$INTEL_HOME/compilers_and_libraries_2019.5.281/linux
 export CPATH=$INTEL_LIBS/ipp/include:$INTEL_LIBS/mkl/include:$INTEL_LIBS/pstl/include
 export CPATH=$CPATH:$INTEL_LIBS/tbb/include:$INTEL_LIBS/daal/include
 export MKLROOT=$INTEL_LIBS/mkl
 export IPPROOT=$INTEL_LIBS/ipp
 export PSTLROOT=$INTEL_LIBS/pstl
 export LIBRARY_PATH=$INTEL_LIBS/compiler/lib/intel64:$INTEL_LIBS/ipp/lib/intel64
 export LIBRARY_PATH=$LIBRARY_PATH:$INTEL_LIBS/mkl/lib/intel64:$INTEL_LIBS/daal/lib/intel64
 export LIBRARY_PATH=$LIBRARY_PATH:$INTEL_LIBS/tbb/lib/intel64/gcc4.7
 export LD_LIBRARY_PATH=$LIBRARY_PATH

Here is another one for a project
that needed to be built with INTEL
compilers and so I had to install the
compiler suite and have access to
SSEC’s license at build-time.

(I ended up making two containers for
this project - one for building and a
separate one for deployment).

8

download_dir/
|-- mirs.sif
`-- tarfiles
 |-- hdf-4.2.15.tar.gz
 |-- hdf5-1.10.6.tar.gz
 |-- hdf-eos2-3.0-src.tar.gz
 |-- netcdf-c-4.7.3.tar.gz
 `-- netcdf-fortran-4.4.5.tar.gz

OK, back to the main thread.

After ./download.bash I have a directory download_dir/ that is a sibling to resource_dir/

The important thing is the singularity container file mirs.sif

If I have built this right, I can use it to compile the NOAA algorithm and I can use it as part
of the final deployment tarball because it will contain all the support libraries needed and
will run on any users OS provided they have a recent version of Singularity installed.

9

#!/bin/bash
#
Top-level script to build a version of MiRS for distribution to
users with a recent version of Singularity.
#
Execute this script in the directory where you found it:
#
./build.bash
< S N I P >
name the .sif in downloads_dir that we are using to build the DAP
sif=$(realpath download_dir/mirs.sif)

make the build directory
mkdir -p build_dir
cd build_dir
build_home=$PWD

rysnc the support static binaries into place
rsync -a ../resource_dir/bin .

rsync the scripts into place
rsync -a ../resource_dir/scripts .

rsync the .sif into place
rsync -a $sif .

make a DAP directory in build_dir
mkdir -p DAP
rsync -a ../resource_dir/mirs_v11r8_r110821321_20211117 DAP/

get ready to compile the MiRS code
cd DAP/mirs_v11r8_r110821321_20211117
export MIRS_ROOT=$PWD

change MIRS_ROOT in paths
cd setup
sed -i "s|<replace_with_mirs_root>|$MIRS_ROOT|" paths

make a build script
cd $build_home
cat <<EOF > build_mirs.bash
#!/bin/bash
cd $MIRS_ROOT/src/crtm/REL-2.1.1/configure
source gfortran.setup
cd ..
make && make install
cd ../..
make
EOF
chmod 755 build_mirs.bash

build the mirs DAP
singularity --silent exec --home=$PWD mirs.sif ./build_mirs.bash

Done
echo Done.

snipped out a few lines of house-keeping so this would fit on page

make a build directory

this is the delivery that I need to compile

create a little bash script to run in the container

execute the script so that the compilation is in the container environment

these are my wrapper scripts

10

[jimd@leo build_dir]$ tree --charset==ASCII -L 3
|-- bin
| |-- h5diff
| |-- h5dump
| |-- h5ls
| |-- h5repack
| |-- h5stat
| |-- nagg
| |-- ncdump
| |-- ncgen
| |-- rename
| `-- wgrib2
|-- build_mirs.bash
|-- DAP
| `-- mirs_v11r8_r110821321_20211117
| |-- bin
| |-- cmake
| |-- CMakeLists.txt
| |-- configure-with-cmake.bash
| |-- data
| |-- doc
| |-- gui
| |-- LICENSE
| |-- logs
| |-- readme
| |-- scripts
| |-- setup
| |-- src
| `-- version.txt
|-- mirs.sif
`-- scripts
 |-- bind_wrangle.R
 |-- cspp_mirs_env.sh
 |-- dirlist_mirs.R
 |-- mirs_srcdiff.R
 |-- mirs_verify.R
 |-- run_mirs.bash
 |-- run_mirs.pl
 `-- sing_test.bash

So now I have another sibling directory …

build_dir/

.. and an executable NOAA algorithm package.

This is where I work on my Perl wrapper script
because I now have a system that runs.

It is convenient to have a short bash script to
pass my run_mirs.pl wrapper script to the
container.

Rather than look at run_mirs.bash now, I will
push on and do the packaging and take a
peek at it later.

11

< S N I P >
define version and tarfile
VERSION=CSPP_MIRS_3_0
TARFILE=CSPP_MIRS_V3.0.tar

make a package directory
mkdir -p package_dir
cd package_dir
package_home=$PWD

create a directory to turn into a squashfs partition
revision=mirs_v11r8_r110821321_20211117
mkdir -p squash/MIRS/DAP/$revision
cd squash/MIRS/DAP/$revision

rsync the DAP from build_dir, excluding the sources
rsync -a ../../../../../build_dir/DAP/$revision/bin .
rsync -a ../../../../../build_dir/DAP/$revision/doc .
rsync -a ../../../../../build_dir/DAP/$revision/scripts .
rsync -a ../../../../../build_dir/DAP/$revision/setup .
mkdir -p data
rsync -a ../../../../../build_dir/DAP/$revision/data/SemiStaticData data
rsync -a ../../../../../build_dir/DAP/$revision/data/StaticData data

squash it
cd $package_home
mksquashfs squash squash.sqsh

make a version directory that will become the tarball directory
mkdir -p $VERSION
cd $VERSION

Make version.txt and time-stamp it
echo 3.0 $(date --utc --date="today" +\%Y\-\%m\-\%dT\%H:\%M:\%S) > version.txt
echo CSPP_HEAP Version 3.0 release. >> version.txt

populate with resource_dir/bin/ and resource_dir/scripts/
rsync -a ../../resource_dir/scripts .
rsync -a ../../resource_dir/bin .

make a directory for docs from the DAP that you want to pull out
rsync -a ../squash/MIRS/DAP/$revision/doc .
mv doc docs

bring the runtime sif across
rsync -a ../../download_dir/mirs.sif .

add the squashfs overlay
singularity sif add --datatype 4 --partfs 1 --parttype 4 --partarch 2 --groupid 1 mirs.sif $package_home/squash.sqsh

make the distribution tarball
cd $package_home
tar -cf $TARFILE $VERSION/

Done
echo Done.

This is package.bash,
I snipped the head off it.

So I make another sibling directory
package_dir/
and copy across just that part of
the NOAA algorithm package that
I need/want to have in my delivery.

The directory I put it in I am
going to make a squashfs
copy of …

… and then add that
to my build container.

tar it up and we are done.

grab the wrapper scripts
and binary utilities

12

[jimd@leo CSPP_MIRS_3_0]$ tree --charset==ASCII -L 2
.
|-- bin
| |-- h5diff
| |-- h5dump
| |-- h5ls
| |-- h5repack
| |-- h5stat
| |-- nagg
| |-- ncdump
| |-- ncgen
| |-- rename
| `-- wgrib2
|-- docs
| |-- MIRS_Algorithm_Theoretical_Basis_Document.pdf
| |-- MIRS_Delivery_Memo.pdf
| |-- MIRS_Interface-Control-Document.pdf
| |-- MIRS_Operations_Manual.pdf
| |-- MIRS_ProcessControl_and_ProductionRules.pdf
| |-- MIRS_System_Description_Document.pdf
| |-- MIRS_System_Maintenance_Manual.pdf
| |-- MIRS_Users_Manual.pdf
| |-- NOAA_Products_MSPPS2MIRS_Transition.pdf
| `-- Performances
|-- mirs.sif
|-- scripts
| |-- bind_wrangle.R
| |-- cspp_mirs_env.sh
| |-- dirlist_mirs.R
| |-- mirs_srcdiff.R
| |-- mirs_verify.R
| |-- run_mirs.bash
| |-- run_mirs.pl
| `-- sing_test.bash
`-- version.txt

This is what I end with…

#!/bin/bash
#
Environment script for CSPP_MIRS
#
EDIT THIS FOR YOUR INSTALLATION AND SOURCE BEFORE RUNNING CSPP_MIRS
#
CSPP_MIRS_HOME points to the CSPP_MIRS installation directory.
CSPP_DYNAMIC_ANCIL_DIR is default local dynamic ancillary directory.
#
These directories must exist for CSPP_MIRS to run. Set CSPP_MIRS_HOME in your
environment then source this file OR uncomment and edit the line(s) below.
#
export CSPP_MIRS_HOME=/data/jimd/Projects/CSPP-S_MIRS/test_dir/CSPP_MIRS_3_0
export CSPP_DYNAMIC_ANCIL_DIR=$CSPP_MIRS_HOME/data/dynanc
#
JPSS_REMOTE_ANC_DIR is the URL of ancillary data server and, unless you
are mirroring to another location, you should not need to change these.
#
export JPSS_REMOTE_ANC_DIR=https://jpssdb.ssec.wisc.edu/cspp_v_2_0/ancillary
export PATH=$CSPP_MIRS_HOME/scripts:$PATH

#!/bin/bash
singularity_version='None'
IFS=':'
for dir in $PATH
do
 if [[-x $dir/singularity]] ; then
 singularity_version=`singularity --version`
 fi
done
unset IFS
if [[$singularity_version == 'None']] ; then
 echo Singularity not detected
 exit 1
else
 echo Detected $singularity_version
fi

cspp_mirs_env.sh

sing_test.bash

13

#!/usr/bin/env bash
#
Skinny wrapper environment script for MIRS (run_mirs.pl) under CSPP with singularity
#
The location of the singularity container is required.
So I am going to require CSPP_MIRS_HOME to find it.
#
exit when the first non-zero exit status is encountered
set -e

check installation home and chdir to it
if [[-z $CSPP_MIRS_HOME]]; then
 echo "Must provide CSPP_MIRS_HOME in environment. See cspp_mirs_env.sh" 1>&2
 exit 1
fi

convert $CSPP_MIRS_HOME to canonical form
export CSPP_MIRS_HOME=$(readlink -f $CSPP_MIRS_HOME)

check for singularity
$CSPP_MIRS_HOME/scripts/sing_test.bash

name the container
mirs=$CSPP_MIRS_HOME/mirs.sif

use readlink -f to track hidden links needed to grok bind string for singularity container of app
readlinked=
dirlist=$(singularity --silent exec --home=$PWD --bind=$CSPP_MIRS_HOME $mirs Rscript $CSPP_MIRS_HOME/scripts/dirlist_mirs.R $@)
for mydir in $dirlist; do export readlinked=$readlinked,$(readlink -f $mydir); done
bind=$(singularity --silent exec --home=$PWD --bind=$CSPP_MIRS_HOME $mirs Rscript $CSPP_MIRS_HOME/scripts/bind_wrangle.R $readlinked)

run run_mirs.pl in the singularity container built for mirs with grokked $bind
singularity --silent exec --home $PWD $bind $mirs perl $CSPP_MIRS_HOME/scripts/run_mirs.pl $@

Done
echo Done.

This is the run script of the
application, run_mirs.bash

1) System requirements I want to adhere to are: Singularity and bash
2) --bind tells Singularity what parts of the filesystem are visible to it.
3) Singularity cannot follow a symlink on part of the filesystem it can “see” to a target on part of the
filesystem it cannot “see”.
4) For me - an inexpert bash programmer - the tools I want to use to resolve this problem (viz a short
R script) require access to the containerized environment.
5) “readlink -f” in the host OS environment is key part of the solution.

14

$ run_mirs.bash -s n20 -i input/ -w ~/work -d dynanc/ -p 4

dirlist=$(singularity --silent exec --home=$PWD --bind=$CSPP_MIRS_HOME $mirs Rscript
$CSPP_MIRS_HOME/scripts/dirlist_mirs.R $@)

echo $dirlist

input/ /home/jimd/work dynanc/ /home/jimd/Data/jimd/MIRS/V3 /home/jimd/Data/jimd/MIRS/
CSPP_MIRS_3_0/data/dynanc /media/jimd/data/jimd/MIRS/CSPP_MIRS_3_0

for mydir in $dirlist; do export readlinked=$readlinked,$(readlink -f $mydir); done

echo $readlinked

,/media/jimd/data/jimd/MIRS/V3/input,/home/jimd/work,/media/jimd/data/jimd/MIRS/V3/dynanc,/media/
jimd/data/jimd/MIRS/V3,,/media/jimd/data/jimd/MIRS/CSPP_MIRS_3_0

bind=$(singularity --silent exec --home=$PWD --bind=$CSPP_MIRS_HOME $mirs Rscript
$CSPP_MIRS_HOME/scripts/bind_wrangle.R $readlinked)

echo $bind

--bind /media,/home

The Apptainer action commands (run, exec, shell, and instance
start) will accept the --bind/-B command-line option to specify
bind paths, and will also honor the $APPTAINER_BIND and
$APPTAINER_BINDPATH environment variables (in that order).

New?

singularity --silent exec --home $PWD $bind $mirs perl $CSPP_MIRS_HOME/scripts/run_mirs.pl $@

15

Develop / Deploy with Singularity
my pattern and practice

PROS

Allows package integrator to choose/control the development
platform.

Singularity does not limit cores/disk/memory at container creation
time (does Docker, VMs? I don’t know) which means all the
resources of host system are available at runtime.

Performance does not seem to be adversely impacted compared
to bare metal.

Portability. I have a very high confidence that my package will
work on a target machine provided it has Singularity installed. I
can ensure all other code dependencies are within the container.

CSPP has provided pre-compiled “install and run in a few
minutes” packages from its inception. Containerization is a
pathway for current source package distributors to deliver as
“ready-to-run” and could simplify running on cloud infrastructure.

CONS

Makes package integrator
responsible for systems-level
tasks; this can be a new
responsibility for traditional
applications programmers.

Adds several layers of
complexity that can be onerous,
especially if the package to be
built is very simple.

Requires sudo access for .sif
creation step.

Filesystem visibility requires a
good deal of attention - well that
is what has caused me most
trouble.

Will this give us seamless access to Windows users? Not yet, by the sounds of it:

You will need a Linux system to run Apptainer natively. Options for using Apptainer on Mac and Windows machines,
along with alternate Linux installation options are discussed in the installation section of the admin guide. END

16

https://apptainer.org/docs/admin/1.0/installation.html

	Canvas 1
	Canvas 2
	Canvas 5
	Canvas 3
	Canvas 6
	Canvas 8
	Canvas 7
	Canvas 10
	Canvas 9
	Canvas 12
	Canvas 11
	Canvas 13
	Canvas 14
	Canvas 4
	Canvas 15
	Canvas 16

