

-10 0 10 Symmetric cloud predictor

A global Observing System Simulation Experiment to evaluate the impact of the EPS-Sterna constellation of microwave sounders

Louis Rivoire ⁽¹⁾, Robin Marty ⁽¹⁾, Thomas Carrel-Billiard ⁽¹⁾, Philippe Chambon ⁽¹⁾, Nadia Fourrié ⁽¹⁾, Olivier Audouin⁽¹⁾, Jean-François Mahfouf⁽¹⁾, Christophe Accadia⁽²⁾ and Jörg Ackermann⁽²⁾

⁽¹⁾ CNRM, Météo-France and CNRS, Toulouse, France and ⁽²⁾ EUMETSAT, Darmstadt, Germany

Correspondence to louis.rivoire@meteo.fr

1. Introduction

A new constellation of satellites with microwave sounding capability, based on the Arctic Weather Satellite (AWS) developed by the European Space Agency (ESA), is under study at the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) as a complement of the EPS-SG program. One of the aims of this project is to increase the number of satellites with microwave sounding capabilities in space, beyond the ones available from the MetOp and JPSS backbone missions. Called EPS-Sterna, this constellation may be launched from 2030 onward on sun-synchronous low earth orbits. In support of the definition of this constellation, in terms of number of satellites and constellation architecture, the Centre National de Recherches Météorologiques (CNRM) will evaluate the impact of the various scenarios for this constellation on Numerical Weather Prediction (NWP) through an Observing System Simulation Experiment (OSSE).

- and produces a realistic evolution of the atmosphere.
- observations simulated using the nature run.

A control data assimilation experiment is run with the simulated, calibrated observing system planned for 2030. Data assimilation experiments with the same observing system plus simulated EPS-Sterna satellites are also run, using the various scenarios presented in section 5. We compare the forecasts produced in one data assimilation experiment with EPS-Sterna to the control experiment in order to measure the impact of the EPS-Sterna scenarios. The relative impact of the EPS-Sterna scenarios can be estimated on relative humidty, temperature, winds, geopotential height, at different forecast ranges, at various vertical levels and over different geographical domains.

7. Impact of EPS-Sterna

Impact of the EPS-Sterna scenarios on first-guess departures standard deviation – 2,5 months – globe – 99% confidence interval

Radiosoundings – V wind

Atmospheric Motion Vectors – U wind AMSU-A on NOAA-15, NOAA-18, MetOp-B and MetOp-C

OP2-4SAT OP3-3SAT — OP3-6SAT 400 850 1000

–10 0 10 Symmetric cloud predictor

-20

20 40 60 Symmetric cloud predictor

2	1 (high)	11:30	OP3-3SAT	3	3 orbital planes, 1 satellite per plane		small-scale temperature and relative numbers, mese increments are compared in the vemication to a
3	2 (moderate)	7:30	OP2-4SAT	4	2 orbital planes, 2 satellites per plane, relative phasing 180 degrees		degradation in the computation of the scores. This degradation has already been noticed in the assimilation of SAPHIR/Megha-Tropiques (see Chambon and Geer, 2017). Yet, when we look at humidity channels peaking at about
To simulate the values are desc	e observations, we us cribed hereafter. Exar	se for the noise of the omples of the simulation of	channels the raw NEΔT divid of the observations are also gi	ided by 3, to simulat given.	e a superobbing using 3x3 pixels. Th	ne exact	500 hPa in the tropical region (from microwave sounders such as MHS on MetOp-B), the additional assimilation of EPS-Sterna observations improves the statistics of the first-guess departures : see the figure beside.
Channel numberFreque (GH150,252	ency Noise Iz) (K) 3 0,33 8 0.21 Channel	Frequency Noise	EPS-Sterna observations for 19/08/2021	for the OP2-4SAT scen 1 between 03:00 and 0	ario - band 13 at 180,311 GHz 9:00 (UTC+2)	- 290 - 280	In the stratosphere, the degradation observed on relative humidity may be related to the way the increments on humidity are currently handled in the ARPEGE model and not related to EPS-Sterna. Indeed a small increment on humidity in the troposphere can lead to large and long-lasting increments in the stratosphere (see Sheperd et al., 2018). The current cut for humidity increments is at 100 hPa and may need to be revisited for a lower level (e.g. 300 hPa).
3 53,2 4 53.5	46 0,21 number 96 0,22 11	(GHz) (K) 176,311 0,18	30.05 6	A.	The state of the s	- 270 ¥	8. Conclusions, limitations and perspectives
5 54, 6 54, 7 55, 8 57,290 9 89 10 165	12 4 0,20 04 0,20 5 0,21 0344 0,22 0 0,10 0,5 0,18 18 19 Scan the QR code to dissatellites of the OP3-6SA She atmosphere (channe) ns from EPS-Sterna	178,811 0,18 180,311 0,25 181,511 0,25 182,311 0,35 325,15 0,47 325,15 0,39 325,15 0,32 325,15 0,25	ky conditions, over oceans a	and land using the	all-sky approach developed at the E	- 260 - 250 - 240 - 230 - 220 - 210 - 210 uropean	 The results presented in this study demonstrate that : All EPS-Sterna scenarios tested have a positive and significative impact on first-guess departures and forecasts at the global scale, particularly on temperature, wind speed and geopotential height. The impact on humidity is mostly positive, with a degradation at 500 hPa and at short range. EPS-Sterna impact is the strongest in the Southern hemisphere, significant at 99% level up to +96h. In the Northern hemisphere, EPS-Sterna impact is good, significant at 99% level up to +48h. However, the framework built for this OSSE suffers from several limitations : Perfect sea surface conditions have been used. In the real world, the use of a sea surface conditions with errors would increase the differences between the reality (the nature run) and the analysis. The synthetic Atmospheric Motion Vectors have not been computed at the location of clouds in the nature run, but at the location of real atmospheric motion vectors. Climatological background errors have been computed and remain unchanged across the different scenarios. Yet, the effect of updating background errors is secondary to that caused by the observing-system change itself (Duncan et al. 2021).
Centre for Med EPS-Sterna are	lium-Range Weather e constructed by fittin	Forecasts (ECMWF) (sing the standard deviation	see Geer and Bauer, 2011). Sons of first-guess departures.	325 GHz channels Examples are giver	are not assimilated yet. The error mo below, with the scattering index used	odels for d for the	 In the coming months, the following point will be addressed : Validate the OSSE framework by comparing the impact of a MetOp-B denial with real observations and with simulated observations in the OSSE.
symmetric cloud predictor both on land and on ocean. Standard deviation of EPS-Sterna FG departures, binned as a function of scattering index - noise and error model used for the simulation and the assimilation							9. References
Channel 4 (53,596 GHz) on land	Channel 4 (53,596 0.4 0.4 0.4 0.4 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.5 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	GHz) on ocean 10 ⁶ 10 ⁵ 10 ⁴ Bridged deviation 10 ⁵ 10 ⁵ 10 ⁴ Bridged deviation 10 ⁵ 10	el 13 (180,311 GHz) on	land Channel 13 (180,311 GHz) or FG departure std error model v1 NEDT / 3	10 ⁶ 10 ⁵ 10 ⁴ In ³ 10 ² M 10 ¹	 Hoffman, R. N., & Atlas, R. (2016). Future Observing System Simulation Experiments. Bulletin of the American Meteorological Society, 97(9), 1601-1616. Geer, A. J., & Bauer, P. (2011). Observation errors in all-sky data assimilation. Quarterly Journal of the Royal Meteorological Society, 137(661), 2024-2037. Geer, A. J., Baordo, F., Bormann, N., Chambon, P., English, S. J., Kazumori, M., & Lupu, C. (2017). The growing impact of satellite observations sensitive to humidity, cloud and precipitation. Quarterly Journal of the Royal Meteorological Society, 143(709), 3189-3206. Chambon, P., & Geer, A. (2017). All-sky assimilation of Megha-Tropiques/SAPHIR radiances in the ECMWF numerical weather prediction system. ECMWF technical memorandum, 802. Shepherd, T. G., Polichtchouk, I., Hogan, R., & Simmons, A. J. (2018). Report on Stratosphere Task Force. ECMWF technical memorandum, 824. Duncan, D. I., Bormann, N., & Hólm, E. V. (2021). On the addition of microwave sounders and numerical weather prediction skill. Quarterly Journal of the Royal Meteorological Society. 147(740). 3703-3718.

100

80

20 40 60 Symmetric cloud predictor

0

EUMETSAT is acknowledged for funding the work presented in this poster.