Satellite Radiance Data Assimilation at KMA(Korea Meteorological Administration)

Hyoung-Wook Chun¹, Seungbum Kim¹, Chang-Hwan Kim¹, Young-Jun Cho¹,

Eun-Hee KIM¹, Jiyoung Son¹, Youngsoon Jo¹, Ji-Hyun Ha¹,

Korea Meteorological Administration umerical Modeling Center

¹KMA, ²KIAPS, ³EWHA Womans University

Configuration of the global NWP system at KMA

NWP: KIM(Korean Integrated Model) launched April 2020

- Spatial resolution: ne360np3 ~ 12km, Cubed sphere grid system
- Vertical resolution: 91 levels, up to 0.01 hPa

✓ DA: Hybrid-4DEnVar

- Incremental analysis resolution: ne144np3 ~ 32km
- 4 analyses per day with 6hour assimilation window
- Background error covariance is combination (Static : Ensemble = 3:7)
- Ensemble: **4D LETKF**, 50 members, ne144np3 ~ 32km
- **KPOP:** KIM Package for Observation Processing Radiative transfer model: RTTOV v12.3

Current use of radiance instruments

- A Assimilated at 4DEnVar and 4DLETKF **E** – Under evaluation
- A^v Assimilated only 4DEnVar X – Failed/withdrawn
- Changes since ITSC-23 are highlighted through orange shading

Satellite	MW Temperature sounder	MW Humidity sounder	MW Imager	IR broadband sounder or imager	IR hyperspectral sounder
NOAA-15	А	Х			
NOAA-18	А	Α			
NOAA-19	А	А			
NOAA-20	А	А			А
S-NPP	А	А			А

Timeline of main instrument changes since ITSC-23 (radiances only)

KIM operation KIM3.6

JMA/GSM, NCEP/GFS,

Jan 2020 nth

launch ('20.4) ('20.10) ('21.4)

KIM3.6a

UKMO/UM.

²⁰²⁰ Jan 2021

KIM3.7

('21ุ.12)

ECMWF/IFS

Jan 2022

KIM3.8

('23.2)

Jan 2023

MW sounders and imagers

Jul 2017 Jan 2018

✓ Main changes

50

45

40

30

- Expanding the ATMS water vapor channel 21, 22 [KIM3.7, Dec 2021]
- AMSUA ch10-14 over land [KIM3.8, Feb 2023]

KMA/KIM, KMA/UM,

✓ Under developing

IR sounders and imagers

✓ Main changes

• GK-2A optimization for thinning and blacklisting [KIM3.7, Dec 2021]

Under developing

- All-sky assimilation of MHS \rightarrow 9.01 (Sihye Lee), 9p.03 (Han-Byeol Jeong)
- ATMS using over sea ice \rightarrow 10p.06 (Jisoo Kim)
- Bias correction stabilizing \rightarrow 12p.04 (Hyeyoung Kim)

Impact of MW radiances on KIM forecasting

- MW radiances: AMSUA, MHS, ATMS, AMSR2 vs. denial experiment
- Verification period: 1–31 July, 2022
- Improvement rate of RMSE against ECMWF analysis [%]

		Globe						North Hemisphere							South Hemisphere							Tropics						
_		θ	24	48	72	96	128	8	24	48	72	96	128	8	24	48	72	96	128	8	24	48	72	96	128			
Q	700hPa	9.09	5.67	3.62	2.63	2.39	1.80	5.76	3.16	1.33	0.61	1.00	0.68	11.48	7.65	6.22	4.75	3.43	3.03	10.85	6.84	4.53	3.57	3.21	2.32			
WS	250hPa	5.51	4.75	4.65	3.69	3.32	2.66	2.05	1.94	1.23	0.41	0.88	1.04	10.61	9.27	9.67	6.80	5.29	3.60	3.11	2.89	1.88	2.85	2.79	2.81			
WS	500hPa	6.13	6.01	5.18	4.07	3.08	2.63	2.99	2.17	1.14	1.59	1.05	1.07	8.75	9.19	7.80	5.38	3.77	3.18	4.95	3.78	3.01	2.46	2.69	2.40			
WS	850hPa	2.59	3.27	3.72	3.41	2.53	1.89	1.30	1.28	1.26	0.96	1.42	0.31	4.30	5.85	6.16	5.20	3.26	2.42	1.67	1.61	1.93	1.92	1.65	2.05			
GPH	250hPa	18.58	12.32	10.96	7.18	5.23	3.50	-4.68	4.28	3.02	3.47	2.70	1.04	35.30	17.44	13.75	7.85	6.10	4.37	9.67	9.34	16.44	13.04	7.19	5.58			
GPH	500hPa	23.12	18.05	13.16	8.93	6.58	4.43	23.62	11.20	6.58	5.31	3.57	1.44	23.30	17.78	13.33	8.60	6.77	4.74	21.15	29.89	30.67	26.83	20.58	15.65			
GPH	850hPa	7.68	7.10	7.65	6.93	6.41	4.57	2.63	-1.14	0.99	2.22	2.05	1.20	9.14	12.29	10.79	8.25	7.54	5.38	9.61	2.89	3.39	6.25	4.87	5.41			
т	250hPa	1.05	-1.38	0.70	1.27	1.01	0.43	3.53	0.87	0.52	0.88	1.19	0.34	7.47	6.21	7.40	6.16	3.71	2.10	-21.18	-22.15	-18.50	-17.28	-14.53	-11.5			
т	500hPa	10.78	10.60	9.28	6.90	4.67	3.17	0.41	5.30	4.59	3.83	2.14	1.49	13.20	10.78	9.97	7.10	4.76	3.29	16.74	15.50	13.52	11.06	8.88	7.11			
т	850hPa	6.77	4.63	3.70	2.94	2.67	3.29	2.24	2.14	1.50	0.88	0.99	0.57	6.94	4.02	3.55	3.47	3.15	4.70	9.59	7.26	6.08	4.42	3.75	3.36			

Difference of RMSE against ECMWF analysis

- IASI channel selection \rightarrow 12p.05 (Ahreum Lee)
- Inter-channel correlated observation error for IASI
- Optimize thinning, blacklisting, bias correction, and observation error

✓ Impact of IR radiances on KIM forecasting

- IR radiances: IASI, CrIS, CSR of geos (GK2A, MSG, Himawari) vs. denial experiment
- Verification period: 1–31 July, 2022
- Improvement rate of RMSE against ECMWF analysis [%]

		Globe						I	Nor	th He	I	Sou	th He	misph	ere		Tropics								
_		8	24	48	72	96	128	8	24	48	72	96	128	8	24	48	72	96	128	θ	24	48	72	96	128
Q	700hPa	1.05	0.92	0.77	0.77	0.80	0.46	1.52	1.23	1.18	0.91	1.23	1.36	0.89	0.43	0.12	0.07	-0.21	-0.46	0.73	0.84	0.64	0.88	0.75	-0.00
WS	250hPa	0.91	0.87	0.36	0.20	0.64	0.66	1.19	0.99	0.57	0.37	0.98	0.82	1.10	0.76	0.13	-0.04	0.29	0.37	0.46	0.86	0.30	0.13	0.58	0.64
WS	500hPa	1.37	1.06	0.57	0.43	0.50	0.27	1.65	1.51	1.60	1.76	1.46	0.96	1.15	0.68	-0.15	-0.36	-0.05	-0.00	1.38	1.22	1.09	0.88	0.76	-0.08
WS	850hPa	0.33	0.64	0.50	0.52	0.23	0.42	0.67	0.98	1.24	0.85	1.21	0.90	0.51	0.66	0.23	0.10	-0.56	0.09	-0.24	0.22	0.01	1.05	1.03	0.67
GPH	250hPa	0.55	1.92	1.00	1.28	1.75	1.11	-5.75	0.65	1.28	1.97	2.22	0.30	6.04	1.19	0.05	0.60	1.25	1.08	-0.82	4.93	4.33	1.70	2.46	3.40
GPH	500hPa	4.44	0.83	0.56	1.43	1.68	0.78	2.65	1.28	2.63	3.14	2.76	1.33	5.41	0.86	-0.15	0.67	1.07	0.40	4.21	-0.37	-0.06	0.24	0.34	-0.10
GPH	850hPa	1.64	1.22	1.57	1.69	1.33	1.74	3.62	2.26	3.28	3.32	2.57	2.96	0.32	0.29	0.25	0.62	0.49	1.39	2.31	1.98	4.80	4.65	3.88	0.87
т	250hPa	0.27	0.85	1.00	0.88	0.97	0.87	1.71	1.29	1.21	1.02	1.13	0.65	0.52	0.72	0.50	0.23	0.19	0.36	-2.56	0.41	1.57	2.34	3.16	3.91
т	500hPa	1.58	1.16	0.59	0.67	0.72	0.57	2.13	2.10	1.51	1.43	0.83	0.54	0.55	0.61	0.15	0.35	0.61	0.53	2.24	0.79	0.31	0.14	0.09	0.35
т	850hPa	1.37	0.72	0.50	0.60	0.41	1.06	0.08	0.32	0.69	1.23	1.23	0.74	0.81	0.13	-0.16	-0.30	-0.39	1.35	2.99	1.75	1.30	1.45	0.83	-0.26

Difference of RMSE against ECMWF analysis

Tromsø. Norwav

14 - 23 March 2023

- The impact of MW on KIM forecasting is mostly positive

except for 10~300 hPa temperature and geopotential height.

Acknowledgments: This research was supported by the Numerical Modeling Center of the Korea Meteorological Administration under grant number "Development of Numerical Weather Prediction and Data Application Techniques (KMA2018-00721)."

- The impact of IR on KIM forecasting is mostly less positive than that of MW.
- Strong degradation is seen over Antarctica

The 24th International TOVS Study Conference (ITSC-24)