Changes in the operational use of passive sounding ECMVF data in the ECMWF NWP system since ITSC-23

Niels Bormann, Bill Bell, Angela Benedetti, Chris Burrows, Mohamed Dahoui, David Duncan, Stephen English, Reima Eresmaa, Alan Geer, Katie Lean, Katrin Lonitz, Cristina Lupu, Marco Matricardi, Tony McNally, Samuel Quesada-Ruiz, Kirsti Salonen, Tracy Scanlon, Josef Schröttle, Liam Steele

ECMWF, Reading, Europe; contact: n.bormann@ecmwf.int

Current configuration of the high-resolution global NWP system (47R3)

Spatial resolution: T_{CO}1279 (≈9km) **Final incremental analysis resolution:** T_L399 (≈50km) **Vertical resolution:** 137 levels, up to 0.01 hPa

Current use of satellite instruments with TOVS heritage

A – Assimilated; P – Passively monitored; E – Under evaluation; X – Failed or data excluded due to quality/transmission issues; 🔅 – All-sky treatment Changes since ITSC-23 are highlighted through orange shading.

Satellite	Present orbit position (LTAN, approx.)	MW temperature sounder	MW humidity sounder	MW imager	IR broadband sounder or imager	IR hyper- spectral sounder
NOAA-15	19:30	A č	Х		Х	
NOAA-18	22:30	A č	Х		Х	
NOAA-19	20:30	A کَش	Α کَ(ٰ)		Р	
NOAA-20	13:30	А	А			А
NOAA-21	13:30	E	E			
Aqua	13:30	Х	Х			А
S-NPP	13:30	А	А			А
Metop-B	21:30	A Č	A کَش		Х	А
Metop-C	21:30	A کُرْہ	A کَش			А
FY-3C	19:00	Х	A کَش	Х		
FY-3D	14:00	P č	A کَش	P న్లో & X		E
FY-3E	17:30	E Č	A Č			
DMSP-F17	18:30		A کَش	A کېږي		
DMSP-F18	16:00		A کُرْبَ	P 🔆 & E		
GCOM-W1	13:30			A کې		
GPM	Mid-incl.		Α کَ(().	A کَش		
Meteosat-9	45.5°E				A	
Meteosat-11	0 ⁰				А	
GOES-16	75.2°W				А	
GOES-18	137°W				А	
Himawari-9	140.7°E				А	
FY-4A	104.7°E					E
FY-4B	133 ⁰ E					E

Timeline of main instrument changes since **ITSC-23** (radiances only)

Assimilation system: 12h 4d-Var with 8h early delivery window; background errors of the day from 50member Ensemble of Data Assimilations (EDA)

Major system upgrades since ITSC-23:

- Cycle 47r3 12 October 2021
- Cycle 48r1 planned for June 2023

For full details see https://www.ecmwf.int/en/forecasts/ documentation-and-support/changes-ecmwf-model.

Radiative transfer

Currently using RTTOV v12.2

Main changes in 47r3 (12 Oct 2021):

New RTTOV coefficients for hyperspectral IR sounders

Upcoming changes in 48r1 (June 2023):

- Upgrade to RTTOV version 13.0
- > Major revision to cloud and precipitation microphysics in RTTOV-SCATT
- \succ Change to v13 predictors for MW sensors
- > Lambertian reflection for ATMS over snow and sea-ice

MW sounders and imagers

Fig. 1(below): Position errors for the day-5 forecast for tropical cyclones, with AMSU-A assimilated in clear sky (y-axis) vs all-sky (x-

IR sounders and imagers

150/167 GHz channels on SSMIS, GMI

Main changes in 47r3 (12 Oct 2021):

- New RTTOV coefficients for all hyperspectral sounders (100 layers, updated CO_2 and spectroscopy), Fig. 3
- Updated observation error covariance for AIRS (with inter-channel error correlations)

Main upcoming changes in 48r1:

- New aerosol-type classification for all hyperspectral sounders (Fig. 4)
- **Updated trace-gas detection**
- Allow usage of all IASI pixels (subject to thinning)
- Unified VarBC setup for all hyperspectral IR sounders

Fig. 4: Examples of the new aerosol-type classification introduced in 48r1 (right) for the situations shown on the left. Purple – aerosol over land; red – desert dust; cyan – volcanic ash; black – other

Fig. 3: Stdev(o-b) for used IASI (top) and CrIS (bottom) observations as a result of the IR sounder upgrades in 47r3, normalised by the control experiment. Values below 100% indicate an *improvement, mostly from better forward-modelling* for the two instruments. Period: 27 June – 11 Aug

Improved treatment of mixed scenes

(using Lambertian reflection)

T+72

Latitude

0.0

-60 -30 0

land and sea-ice

400

700

-0.04

-90

-0.02

Major upgrade of cloud and precipitation microphysics in RTTOV-SCATT, esp for ice-clouds

> ATMS humidity-sounding channels over snow

Lowest humidity-sounding channels over snow-free

land at high latitudes for instruments used in all-sky

Slant-path radiative transfer for cross-track MW humidity sounders in all-sky

Fig. 2, left: Normalised difference in RMSE of 72 h wind forecasts resulting from the MW radiance upgrade in 48r1 (excl RTTOV-SCATT). Period: 20 June – 30 Sept 2019 & 1 Dec 2019 – 29 Feb 2020. right: Examples of additional coverage 0.04 activated in 48r1 (red).

1 Dec 2019 0Z ATMS humidity-sounding channels (183 GHz) 1 Ďec 2019 0Z 🌌

Acknowledgements

30

60

0.02

ECMWF gratefully acknowledge the invaluable funding from EUMETSAT, ESA, and the EU, and collaboration with other agencies, notably CMA, JMA, JAXA, NOAA, and NASA.

In development/under evaluation

- New or future observations:
 - > Monitoring of visible reflectances (3p.01 Cristina Lupu)
 - ➢ FY-4B/GIIRS (7p.01 Chris Burrows)
 - > FY-3E (15.04 Liam Steele)
 - ➤ TROPICS (8p.03 David Duncan)
 - Sterna (8.01 Katie Lean)
 - CrIS SW IR channels (15p.01 Chris Burrows)
- Fuller exploitation of window channels incl extraction of surface information in a coupled **system** (3.04 – Samuel Quesada-Ruiz; 13.03 – Tracy Scanlon; 10p.03 – David Duncan)
- **Revised thinning and super-obbing for humidity-sounders** (9.05 David Duncan)
- Improved observation-error modelling for hyperspectral IR and alternative assimilation **approaches** (12.01 – Kirsti Salonen; 12.06 – Cristina Lupu; 15p.14 – Kirsti Salonen)
- **Orbital biases and how to treat them** (2p.01 Niels Bormann)
- Machine learning approaches for cloud detection and detection/classification of **observation anomalies** (11.03 – Chris Burrows; 11p.03 – Mohamed Dahoui)
- Assimilation of reprocessed and rescued radiance observations for ERA6 (5.04 Bill Bell)

2019 & 6 Dec - 2019 - 2 Feb 2020

(with relevant ITSC-24 presentation/poster numbers)