Ø METEO FRANCE

Comparison study between RTTOV-13 and 4A/OPv1.7 to simulate IASI in clear-sky over oceans

Jean-Marie Lalande¹, Raymond Armante², Jerome Vidot¹, Virginie Capelle², Pascale Roquet¹

¹Centre National de Recherches Météorologiques, Météo France, CNRS ²Laboratoire de Météorologie Dynamique, École Polytechnique, CNRS

LMD

Objectives

- Follow recommendations from the ITSC and Trattoria on radiative transfer codes intercomparisons
- Validation of new developments in Radiative Transfer codes
- Identify potential systematic errors:
- spectroscopic databases
- numerical integration, parametrization
- atmospheric models

Radiative Transfer Models

	RTTOV v13 [1]	4A/OP v1.7 [2]
Model type	Fast Band model ^{\dagger}	Fast Line-By-Line ^{††}
Spectral Range	UV to Submillimeter	Infrared $[100 - 14000] \ cm^{-1}$
# Molecules	28 (7 variables)	52
Spectroscopic DB	HITRAN 2012	GEISA 2016
Water Vapor	MT CKD (3.2)	MT CKD (3.2)
Jacobians	\checkmark	\checkmark
Main Purpose	Data assimilation in NWPs	s Greenhouse Gases Retrievals

• Radiosounding: $P(z), T(z), H_2O(z)$

300 ₁ Band 1 Band 2 Band 3

Database of atmospheric profiles colocated with IASI observations

† Parametric model of convoluted transmittances (#120 instruments)[3]*††* Atlases of monochromatic optical thicknesses

Spectrum comparisons

- At 667 cm^{-1} : ARSA temperature profiles extrapolated with ERA-interim reanalysis which is known to have a cold bias \rightarrow Comparisons with ERA-5 ongoing
- Between $[700 750] \ cm^{-1}$: More analysis on CO₂ concentration profiles
- Between $[1010 1080] \ cm^{-1}$: O₃ spectroscopy is biased, ERA-interim O₃ profiles also biased \rightarrow Study has began with new ozone spectroscopy in GEISA-2020 and ERA-5 ozone profile
- Slight offset between RTTOV and 4AOP in window channels \rightarrow Due to sea-ice emissivity ([4] in 4A) / Improved in the tropic

ar1	/hand)
	/ DADD	/

- ERA-interim: $O_3(z)$, T_{surf}
- CAMS: $CO_2(z)$, $CH_4(z)$
- **Conditions:** Night (avoid non-LTE effect) / Ocean / Clear-sky
- 15310 IASI observations (Fourier Transform Spectrometer) colocated with 43 levels profiles
- Dataset spans all four seasons of **2017** and profiles are sorted per airmass class

Jacobian comparisons

CO2 Concentration Jacobian at 667.00 cm⁻ CO2 Concentration Jacobian at 722.00 cm⁻¹ CO2 Concentration Jacobian at 1025.00 cm⁻¹

• IASI band #2 comprises mostly H_2O continuum absorption $\rightarrow RTTOV$ and 4AOP show very similar trends

• At 1305 cm^{-1} : bias linked to $CH_4 \rightarrow$ line-mixing, concentration profiles

• Increased bias in tropical zone linked to water vapor content overestimated in ERA-interim \rightarrow Study differences between ERA-5 and ERA-interim

• Bias in the P and R branches from CO absorption in RTTOV \rightarrow Improved by changing the fixed CO concentration profile • Spectroscopy of CO_2 in $[2230 - 2390] cm^{-1}$ + temperature biased

- At 2380 cm^{-1} : line mixing artefact \rightarrow can be corrected by adding a small CO₂ continuum
- Between $[2590 2760] \ cm^{-1}$: H₂O vs HDO distinction in 4AOP \sim The profile of HDO is parameterized from the H₂O concentration profile
- At ~ 2200 cm^{-1} : bias linked to N₂O concentration profile

- Temperature jacobians are in good agreement
- Some differences appear in concentration jacobians \rightsquigarrow Likely related to the parameterization of low optical depth values

Conclusions

- Intercomparisons are fundamental for validating spectroscopic databases and new development in codes
- We confronted RTTOV & 4AOP newest versions to IASI observations
- We use a dense set of radiosounds/reanalysed profiles in order to mitigate atmospheric uncertainties
- The results show similar features between RTTOV and 4A/OP biases albeit slight differences within instrumental noise
- \rightarrow Recommendation: update RTTOV spectroscopic database
- Not shown here: standard deviations for RTTOV and 4A are very similar

Outlook

- New version of the ARSA database available soon with ERA-5 reanalysis
- Introduce realistic concentration profiles for CO and N_2O
- Investigate Jacobians differences (Optical Depth Parameterization)
- Use of a reference for Radiative Transfer (*i.e.*, LBLRTM)
 - Couple with inversion procedure to estimate model related bias

• Spectrum differences grouped by airmass class (tropical, mid-lat1, mid-lat2, polar1, polar2) and sorted in ascending order of Integrated Water Vapor

• Differences are clipped between [-1, 1] Kelvins

• Overally **4A** model shows slightly better performances than **RTTOV**

References

- [1] R. Saunders, J. Hocking, E. Turner, P. Rayer, D. Rundle, P. Brunel, J. Vidot, P. Roquet, M. Matricardi, A. Geer, N. Bormann, and C. Lupu.
 - An update on the rttov fast radiative transfer model (currently at version 12). Geoscientific Model Development, 11(7):2717–2737, 2018.

[2] N. A. Scott and A. Chedin.

A fast line-by-line method for atmospheric absorption computations: The automatized atmospheric absorption atlas.

Journal of Applied Meteorology (1962-1982), 20(7):802-812, 1981.

[3] J. Hocking, J. Vidot, P. Brunel, P. Roquet, B. Silveira, E. Turner, and C. Lupu. A new gas absorption optical depth parameterisation for rttov version 13. Geoscientific Model Development, 14(5):2899–2915, 2021.

[4] W. C. Snyder, Z. Wan, Y. Zhang, and Y.-Z. Feng.

Classification-based emissivity for land surface temperature measurement from space. International Journal of Remote Sensing, 19(14):2753–2774, 1998.

Contact information

jean-marie.lalande@meteo.fr