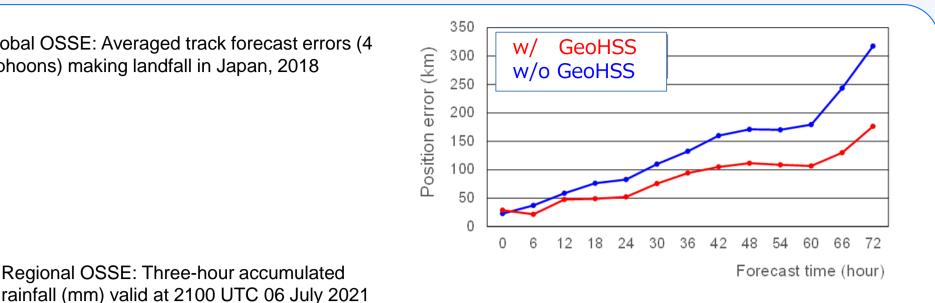


JNA and JAXA

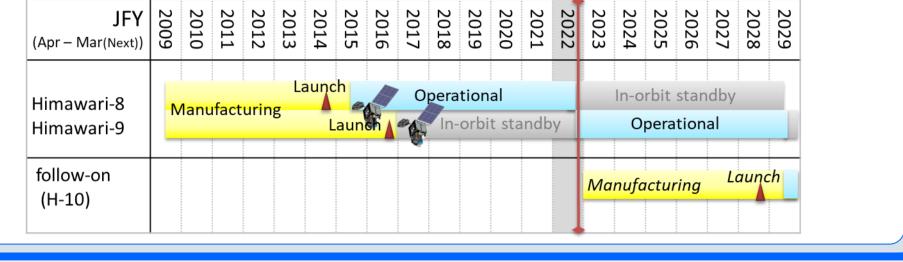
Kozo Okamoto¹, Kotaro Bessho¹ and Misako Kachi² (1:JMA, 2:JAXA)

JMA

□ Himawari-8/9


- Switch the operational satellite from Himawari-8 to Himawari-9 on 13 Dec. 2022
- □ AHI (Advanced Himawari Imager) on Himawari-8/9 performs very well
- □ Image navigation errors < 600m at the sub-sat point
- Image Navigation and Registration (INR) monitoring: https://www.data.jma.go.jp/mscweb/data/monitoring/navigation.html
- □ Radiometric calibration biases < 5% for VNIR bands (bands 1 to 6), and 0.3 K for IR bands (bands 7 to 16)
- Calibration portal: https://www.data.jma.go.jp/mscweb/en/oper/calibration/calibration_portal.html
- □ HimawariRequest: Target area obs (1,000km², every 2.5 min) on request from NMHSs
- □ 22 NMHSs registration, 155 requests implemented for TC, volcanic eruption, wild fires, etc. (as of Jan.2023)
- User support info: https://www.data.jma.go.jp/mscweb/en/support/support.html

□ Himawari-10: Himawari follow-on program

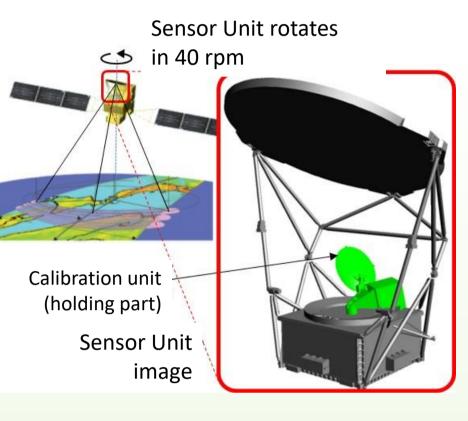

- Plan to launch in JFY2028, start operation in JFY2029
- □ JFY2022: RFI, RFP and Start of manufacturing
- Design lifetime: 15 years (10-y in-orbit operation & 5-y in-orbit storage)
- AHI-class VIS/IR imager (with optional improved capability)
- Hyperspectral IR sounder (HSS)
- Global and Regional OSSE for HSS (Okamoto et al. 2020, sola)
 - Assimilate clear-sky radiances in global OSSE and temperature & relative humidity profiles from 1DVar in regional OSSE
- Simulate IRS-like synthetic observations: full disk scan every hour, 30km spatial spacing

Himawari-8,9/AHI Channel Set				
Band	Central Wavelength [µm]	Spatial Resolution		
1	0.43 - 0.48	1km		
2	0.50 - 0.52	1km		
3	0.63 - 0.66	0.5km		
4	0.85 - 0.87	1km		
5	1.60 - 1.62	2km		
6	2.25 - 2.27	2km		
7	3.74 - 3.96	2km		
8	6.06 - 6.43	2km		
9	6.89 - 7.01	2km		
10	7.26 - 7.43	2km		
11	8.44 - 8.76	2km		
12	9.54 - 9.72	2km		
13	10.3 - 10.6	2km		
14	11.1- 11.3	2km		
15	12.2 - 12.5	2km		
16	13.2 - 13.4	2km		

Global OSSE: Averaged track forecast errors (4 typhoons) making landfall in Japan, 2018

(c) w/o GeoHSS (b) w GeoHSS

Apply the nearly operational processing (ch selection, obs error assignment, bias correction, thinning) Significant improvement in forecasts of Typhoon track and heavy precipitation in many cases from 2018-2021


JAXA

AMSR3 on GOSAT-GW JFY2024 (Apr.2024~Mar.2025)

- Succeed AMSR series
- Oct. 2021: Critical Design Review (CDR) of AMSR3 system

AMSR3

- Currently, AMSR3 flight components are manufactured and tested
- Additional channels
- 166 & 183 GHz channels to enable monitoring of global precipitation (rain & snow) and contribute to water vapor analysis in NWP
- In the second in higher spatial resolution

GOSAT Jan. 2009~, **GOSAT-2** Oct. 2018~

- Joint projects of JAXA, MOE (Ministry of the Environment) and NIES (National Institute for Environmental Studies)
- **GOSAT** (Green house gases Observing SATellite)
- The world's first spacecraft to measure the concentrations CO2 and CH4: Long term (14-y) calibrated validated dataset
- Enough fuel to operate for at least another 10-y, healthy all 4 batteries

GOSAT-2

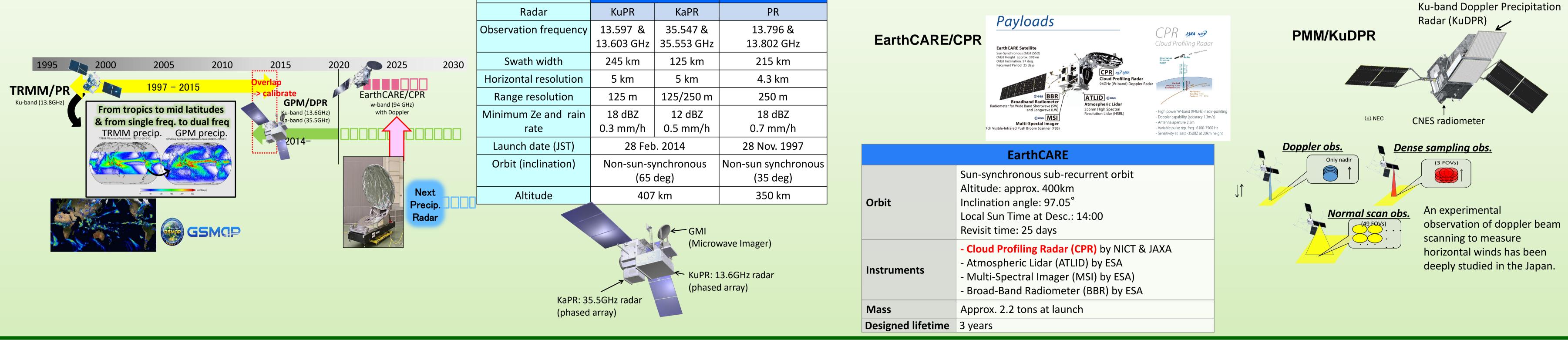
Calibration: In Feb. 2021, anomaly in the solar diffuser panel mechanism. The solar irradiance calibration has been suspended since then.

	GOSAT		
TANSO- CAI	TÁNSO- FTS	GOSAT-2 TANSO-2 FTS-2	TANSO-2 CAI-2

frequency [GHz]	Polarization	Band width [MHz]	NEDT (1σ)	Beam width (spatial resolution)		GW AMS					
6.925, 7.3	H/V	350	< 0.34 K	1.8°	GOSAT-	GW AND			GOSAT	GOSAT-2	GOSAT-GW
10.25	H/V	500	< 0.34 K	(34km x 58km) 1.2° (22km x 39km)	JFY 2024-			Launch, Life Time	2009, 5 years	2018, 5 years	JFY2024, 7years
10.65	H/V	100	< 0.70 K	1.2 [°] (22km x 39km)		TANSC	-3	Sat mass, power	1.75t <i>,</i> 3770W	1.8t <i>,</i> 5000W	2.9t, 5200W
18.7	H/V	200	< 0.70 K	0.65° (12km x 21km)	GOSAT-G	GOSAT-GW	-GW	Orbit	666 km, 3 days, 13:00, descending	613 km, 6 days, 13:00, descending	666 km, 3 days, 13:30, ascending
23.8	H/V	400	< 0.60 K	0.75°	Тур	Sun-synchronous, Sub-recurrent orbit	TANSO-3 on GOSAT-GW JFY2024	Spectrometer	TANSO-FTS	TANSO-FTS-2	TANSO-3 (Grating
20.0	,			(14km x 24km) 0.35°	Orbit	666km, recurrent cycle 3days		Major targets	CO2, CH4	CO2, CH4, CO	CO2, CH4, NO2
36.42	H/V	840*	< 0.70 K	(7km x 11km)		(same as GOSAI)	Gratings were chosen instead of FTS to realize	Spectral bands	0.7,1.6, 2μm, TIR	0.7,1.6, 2μm, TIR	0.45, 0.7,1.6, μn
89.0 A/B	H/V	3000	< 1.20 K	0.15° (3km x 5km)	Mass	2.6 ton (Including propellant)	smaller footprint and wider swath Band 1 (~ 0.45 μm) for NO2, Band 2 (0.76 μm) for O2, and Band 3 (1.6 μm) for CO2 and CH	spectral resolution (sampling interval)	0.2 (≈ 0.01 nm ~ 0.05 nm	cm-1 ι @ 0.7 μm, @ 1.6 μm)	< 0.5 nm @ 0.45 μ <0.05 nm @ 0.7μι < 0.2 nm @ 1.6 μ
165.5	V	4000	< 1.50 K	AZ=0.23°/EL=0.30° (4km x 9km)	Power	> 5.3 kW	 Cloud detection (band 1,2), surface pressure, and 	(sampling interval)	≈ 0.05 nm	@ 1.6 μm)	
183.31±7	V	2000 × 2	< 1.50 K	AZ=0.23° / EL=0.27° (4km x 8km)	Design life Launch vehicle	> 7 yearsH-IIA rocket	Solar Induced chlorophyll Fluorescence (SIF, band2) 2 imaging mode 	swath	discrete, 1-9 points	discrete, 5 points	Selectable, 911 k (Wide) or 90 km(Focus)
183.31±3	V	2000 × 2	< 1.50 K	AZ=0.23° / EL=0.27° (4km x 8km)	Mission data	Direct transmission with X-band: 400 Mbps	Wide mode (default): push-broom, footprint 10 km and swath 911 km	footprint size	10.5 km	9.7 km	Selectable, 10 km (V or 1 – 3 km(Focu
		· · · · · ·			downlink rate	Direct transmission with S-band:	Focus mode: footprint 3 km and swath 90 km, agile	pointing	±20 /±35 deg(AT/CT)	±40 /±35 deg (AT/CT)	±40 /±34.4 deg (AT
						1 Mbps (Only for AMSR3) TANSO-3 (for GHG)	pointing (\pm 40 deg in the along-track direction and \pm 34.4 deg in the cross-track direction)	other instruments	CAI (Cloud and AerosolImager)	CAI-2 (Cloud and AerosolImager 2)	AMSR3
					Instrument	AMSR3 (for Water Cycle)					1

Precipitation and Cloud Profiling Radar

- IAXA has large heritage of the TRMM/PR and GPM/DPR, and the data record of spaceborne precipitation radars is more than 20 years.
- JAXA and NICT (National Institute of Information and Communication Technology) are developing Cloud Profiling Radar (CPR) with doppler capability, onboard EarthCARE satellite
- The JAXA has studied a feasibility of a next generation precipitation radar with Japanese science team and user community.
- \bullet The targets for the next generation precipitation radar in the Precipitation Measuring Mission (PMM) will be Doppler observations, and higher sensitivity measurements with scanning capability.
 - JAXA has participated in NASA's Atmosphere Observing System (AOS) Pre-Phase A activities.
- JAXA's PMM Pre-Project Team was established on for the spacecraft carrying the Ku-band Doppler Precipitation Radar (KuDPR) in January 2022.


		Satellite	GPM core		TRMM
		Radar	KuPR	KaPR	PR
		Observation frequency	13.597 &	35.547 &	13.796 &
			13.603 GHz	35.553 GHz	13.802 GHz
2025	2030	Swath width	245 km	125 km	215 km

EarthCARE/CPR JFY2024

- An earth observation satellite that Japan and ESA have been jointly developing to observe clouds, aerosols and radiation (Illingworth et al. 2015, Wehr et al. 2023).
- The Cloud Profiling Radar (CPR) will provide observations of not only cloud but also snowfall and light rainfall
- Measuring Doppler velocities by the CPR is very challenging, but it is expected to advance cloud/precipitation science

PMM/KuDPR JFY2028

- Observation modes: Doppler obs mode, Dense sampling obs mode, Normal scan obs mode
- KuDPR will be two-antenna system that adopts Displaced Phase Center Antenna (DPCA) approach (Durden et al. 2007, Tanelli et al. 2016). \rightarrow more accurate Doppler measurement.

