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Introduction

= To improve the accuracy of weather forecasting, research on data assimilation (DA) with various qualified observations is being actively conducted.

= Recently, various machine learning (ML) techniques are applied to the meteorology field. Especially, there are many studies for cloud detection using
ML algorithms such as support vector regression, the decision tree, the Artificial Neural Network (ANN), and fusing multi-scale convolutional features.

= |n this study, we develop the QC method based on ML techniques which can provide efficiency and accuracy in the cloud detection area.
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Previous Study (for MHS* humidity sounding)

*Microwave Humidity Sounder

= \We developed the ML-based QC method using the estimating model of the MHS TB for the rigorous cloud detection.
= As aresult of RMSD against IFS analysis, it shows a neutral impact compared to CTL.
v" Too strict to provide the sufficient water vapor information for the humidity sounding channels and analysis field.
v" Verified the applicability of the ML-based QC method, however, the limitations existed in the model design using the KPOP

results only.
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Fig 3. Zonal Mean DIFF (EXP-CTL)

Machine Learning Model (for ATMS*)

*Advanced Technology Microwave Sounder

= We develop the QC method based on ML techniques which can provide efficiency and accuracy in the microwave
temperature sounding channels of ATMS using the information of observation (O), background (B), and analysis (A).
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Datatype | - ob4da_atms_$date.nc, diag_atms$time-window.7.nc
Observation minus Dataset | (Training & Test) 2021. 07. 01. 00UTC~07. 31. 18UTC
Background (O-B) | | (1,403,322)
\__//————— » Observation minus Background (O-B)
v" ATMS CH10 (as the temperature sounding channel)
l « Brightness Temperature Difference (BTD)
' v" CHO8-CH10, CH09-CH10, CH10-CH13, CH10-CH15
Brightness INPUT » Location information (latitude, longitude)
Temperature » Observation information of satellite—based instrument
W_— v' Satellite Zenith Angle, Solar Zenith Angle
» Time information

v Day Of the Year, hours, minutes, seconds)

[ OUPUT » Observation minus Analysis (O—A) of ATMS CH10

v Provides the information of the upper atmosphere (100hPa)
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Fig 4. Description of the Machine Learning Model for the QC using the ATMS radiance
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Results

= The MLP model is trained by the relationship between the O—A and the information of the upper atmosphere
(over 100 hPa) in terms of the space-time with the satellite-based instrument.

Estimated O—-A vs. O-A

= We use the temperature sounding channels D81 4 of datasets = 350,831 ®

as the features to predict the O—A values. 0.6 - .
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Fig 6. Time series of the O—A estimated (MLP) against O—A (True)

=  The ML model not only predicted well in terms of statistics, but also similarly predicted the spatial distribution.
= \We can calculate the mean and standard deviation values of the estimated O—A in every scene and it can be used
as the threshold for the new ML-based QC method in the satellite radiance (ATMS) data assimilation.
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Summary and Future Plans

Development of the prototype model of ML-based QC technique for the microwave satellite radiance DA

= |n our previous study, we developed the ML-based QC method using the estimating model of the MHS TB for
the rigorous cloud detection and the DA performance shows a neutral impact compared to CTL.

= To overcome the limitations, we attempt to build the new ML model using analysis (A) for the temperature
sounding channels of the ATMS satellite observations.

= The MLP model shows high performance to estimate the actual O—-A (CH10), which can consider the
relationship between space-time and meteorological variables with the satellite-based instrument.

= |t also similarly predicts the spatial distribution and it can be used the new ML-based QC method in the
satellite radiance data assimilation to improve the temperature fields of the upper atmosphere.

= |f the ML-based QC using the estimated O—A is performed before the bias correction in the Observation
Processing System (KPOP), it will affect the calculation of Corrected TB (C).

Futrue Plans

= Establishment the new ML-based QC system within the KPOP system [Fortran < Python]
v Applying the QC method using the estimated O—-A to upper temperature sounding channels.

= Verification of the DA performance through the analysis-forecast cycle with this new ML-based QC.
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