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P Motivation & Objectives

\/

* (Background) KIM Package for Observation Processing (KPOP) in Data Assimilation (DA) system
v" KPOP contributes to enhancing the performance of the DA system by not only adding new observations but also improving the quality of existing observations.
v To support the efficient operation of KPOP, evaluating the impact of the assimilated observations on the forecast performance is necessary.
“ (Motivation) Challenging to develop the Forecast Sensitivity and Observation Impacts (FSOI) system due to the high complexity resulting from KIM’s non-linearity
v" Ensemble FSO: using ensembles of analysis states and corresponding forecasts instead of adjoint analysis, Hybrid FSOI: combination of the adjoint approach and ensemble approach
(a) (b)  riestrror

X[ = M(x,) = &, =e(x]) = (x -x,) C(x] -x,)

Observation L o : ' X = M(x,) s & = €(x)) = (x; =X,) C(x; = x,)

-12 h

Figure 1. (a) illustrates the structure of the designed 2-steps Al based FSOI system, and (b) depicts the observation impact estimated by the degree of change according to observations.

\/

“ (Objectives1) This study presents a novel approach for estimating forecast sensitivity by comprehensively analyzing diverse meteorological characteristics in an Al manner.

\/

“ (Objectives2) We discovers the spatiotemporal dependence of atmospheric variables and the multiple characteristics of meteorological phenomena.

% Methods

\/

<+ For learning the relationship of atmospheric states between adjacent regions, we proposed a CNN-based prediction 3D-CRNN (VGG backbone)
model called A3SD-CRNN to extract spatial patterns of atmospheric phenomena with various properties. w0

~ A3D-CRNN: Attentive 3D-Convolutional NN Estimating the Forecast Sensitivity

- Spatial distribution «  Concepts

v Both vertical convection and horizontal advection v" We compared the prediction accuracy with (x;) and without (x/)
v Extending the two-dimensional convolution filter to three dimensions the analysis field at time ¢.

-  Temporal features x; =< analy, A;_,, >, x; =< bkg;, A;_,, >,
v Dynamic patterns of atmospheric phenomena over time A;_, ={anal;_,|In < N}.

v Gated recurrent unit (GRU) based model for the robustness of long- (N indicates the sequence length) Inception module
term prediction

Filter concatenation

Formulation ' ;

*  Atmospheric phenomena v Forecasts sensitivity S in time t is computed as: vai ﬁﬁgﬂﬂ@#@
v Multiple scales of the atmospheric phenomena 353 cony

1 Channel-refined [MaxPool, AvgPool] Spatial Atten
v"Using the inception network to reflect the multi-scale of spatial patterns FS(x, f) = z ( flxy)—f (x{)) ,
v Various shapes of atmospheric phenomena x¢, Xt €EX¢
v" Attention module is developed to extract distinguishing features even where f(-) denotes the function for obtaining the prediction
for regions that exceed the size of the CNN filter accuracy by ASD-CRNN model. Figure 2. Architecture of the proposed A3D-CRNN model.

¥ Experimental Results

<+ Experimental procedures
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Table 1. A performance comparison of the proposed model with the baseline deep learning met . RMED (anable) V RVSD (analbe) TRV {analbie) Q RMSD (anal-bie)
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S | BT i 0 i ##l i E Figure 3. Forecast sensitivity for each variable (u, v, T, qv) estimated over time with the proposed system.
v Reflecting the various physical properties of atmospheric phenomena contributes to high accuracy v" The RMSD from the proposed model showed similar trend to the true forecast error difference.
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Figure 4. Comparison of the spatial distribution of forecast sensitivities of the baseline system (EFSO) and the proposed system (A3D-CRNN) in each meteorological variable.

¥ Conclusions & Future directions

(Conclusion) We have proposed a novel Al-based approach, named the Attentive 3D-convolutional RNN, which enables the assessment of the propagation impact of the analysis field to the forecast field.
(Conclusion) This end-to-end method complements the current research that relies on numerical and assimilation system biases.

(Limitations) The proposed method learned based on the output of the KIM model only can be applied to grid-type data, and requires more experiments to evaluate the estimated sensitivity.

(Research directions) In our further study, we extend the proposed model to estimate the observation impacts on the analysis field (Step 2).

(1 To reflect various meteorological variables collected from multiple observations, heterogeneous data processing techniques and multimodal fusion algorithms can be used.
@ To learn non-grid and irregular observations, we can apply graph neural networks or advanced convolutional kernels.
@ Differential equation-inspired deep learning can be used to understand various meteorological phenomena in continuous-time dynamics with different time intervals.




