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Introduction
For the last few years, an automatic data checking system has been used at ECMWF to 
monitor the quality and availability of observations processed by ECMWF’s data 
assimilation system (Dahoui et al., 2020). The tool is playing an important role in flagging 
up observation issues and enabling timely triggering of mitigating actions. The system 
has few weakness: 

• The behaviour of the system is less optimal when assigning a severity level to 
detected events. occasionally less significant events can be communicated as severe.  
When the day-to-day variability is small, moderate changes can be interpreted as 
severe from a statistical point of view.  Not every threshold violation is a problem, 

• The current system is not able to consider warnings affecting individual data types in 
the context of what is happening with the rest of the observing system and the type of 
weather activity dominating the affected areas. Most anomaly detection tests are 
based on first-guess departures which are the combination of uncertainties from  
observations and short-range forecast. As a results, generated warnings are not 
necessarily caused by observation problems. Factors causing the statistics to deviate 
are diverse. 

Machine learning techniques offer the possibility to improve the anomaly detection via a 
better detection of patterns, and to improve the classification of events by severity and 
cause. They do not need a periodic adjustment of threshold limits, either, which makes 
them useful for the monitoring of satellite data from a growing number of satellite 
platforms.

A new version of the automatic data checking system has been designed. It is based on 
an unsupervised recurrent neural network algorithm for the detection of abnormal 
statistics, and on a supervised learning algorithm (random forest) to classify the detected 
events. 

Unsupervised detection of observation anomalies 
Two neural network models are applied to each individual data group to learn from the short-term behaviour 
(past three months) and the long-term evolution (past 12 months when available). The neural networks are 
autoencoders with long short-term memory (LSTM) cells. The choice of LSTM is mainly intended to enable 
multi-feature analysis, which is important to support large amounts of data. LSTM offers also the possibility to 
learn the temporal evolution of statistics. 

The short-term model is trained every data assimilation cycle using recent statistics and excluding the last two 
days. The training dataset contains only statistics that are considered to be ‘normal’. Previously detected events 
and outliers are excluded. As part of the training, we determine the resulting reconstruction error, which is 
conservatively chosen as the upper tail of the calculated loss in the training set. The trained model is then 
applied to the latest data sample (spanning the last few days) to reconstruct/predict the current statistics. 
statistics will be larger than the reconstruction error when abnormal statistics are encountered (Figure 2). 
Statistics that are provided as input to the short-term model are Min/Max normalised. When relevant, the 
statistics are adjusted to remove periodic signals. 

The aim of the long-term trained model is to detect a slow drift of statistics. The model is trained once every 
quarter using the past 12 months of statistics (if available). To speed up the training and smoothen day-to-day 
variability, the data are sampled over periods of ten days. As part of the training, we determine the resulting 
reconstruction error, which is chosen as the upper tail of the calculated loss in the training set. The trained 
model is then applied to the latest data sample (spanning the last few weeks sampled every10 days) to 
reconstruct the current statistics. Large differences between reconstructed statistics and observed ones indicate 
a significant change compared to long-term behaviour. Such a change can take the form of a step change (due 
to a model upgrade), or a slow drift of the observation quantity being monitored. The main interest is to detect a 
slow drift of statistics. This is achieved thanks to a monotonic slope detection algorithm applied to cases flagged 
up by the neural network. If the slope is not monotonic, the event is discarded.

Design of the machine learning observational data checking system 
The anomaly detection module rely on an unsupervised neural network algorithm to detect large deviations of statistics. This module aims to flag up sudden 
changes and slow drifts of statistics. The anomaly detection is performed separately for all observation types. The combined results for all observation types 
are analysed by a supervised machine learning classifier (random forest) to adjust the severity (including a dismissal of the event), indicate the likely cause, 
and suggest whether action is needed. The classification results are then processed for each individual data type in order to generate relevant plots and 
archive warnings in an event database. 

Figure 1: Schematic of the data checking system. The autoencoder LSTM has five layers. The first two encoding layers (with 16 and 8 units respectively) are designed to 
create a compressed representation of the input data. The third layer processes the compressed vector to provide input for the subsequent decoding layers, and the last two 
decoding layers (with 8 and 16 units respectively) aim to reconstruct the input data from the compressed representation. 

Supervised classification of detected anomalies 

Population of Past events 
from the current system: 
Each Warning is augmented 
with info from the other 
warnings 

• Tropical cyclones
• Areas with large increments 
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better reflect scientific judgment and allow better classification   

Trained model (random forest) 
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Conclusion
This implementation of the machine learning data checking system aims to incorporate novel techniques in the detection and classification 
of observation anomalies. The new system tends to have fewer false alarms than the current operational framework, and it is able to detect 
all relevant anomalies. The classification of detected events is expected to improve with revised training based on improved labelling of 
past events. 

The Hunga-Tonga eruption
The eruption of the Hunga Tonga–Hunga volcano in 
the southern Pacific Ocean on 15 January 2022 had 
a strong effect on the signals of satellite instruments 
used by ECMWF.  Infrared and Microwave 
measurements witnessed a powerful pressure and 
temperature wave that moved quickly from the 
ocean surface up into the stratosphere and radiated 
outward. The eruption triggered numerous alerts in 
the ECMWF data monitoring system because the 
observed radiance characteristics deviated from the 
expected behaviour. The Machine learning based 
system is able to detect the abnormality of the event 
and to indicate that the origin is likely not related to 
data issues.

Figure 3: Process to train the random forest classifier. Figure 4: Features used in the machine learning classifier 

Figure 5: First-guess departures from channel 92 of the IASI infrared 
interferometer sounder over 24 hours on 15 January 2022.

Faulty moored buoy (tropical cyclone FANI) 
As the tropical cyclone FANI (April 2019) was progressing in the bay of Bengal a moored buoy was 
hit by large waves and capsized ahead of the TC. As a result, first guess departures increased 
considerably. Few of these observations were used by the data assimilation (helped by a relaxed QC 
due to the increased EDA spread around the TC). The wrong observations degraded significantly the 
analysis and subsequent forecasts of the TC. The automatic detection system was able to detect 
these gross errors. With future improvements to the data selection procedure, similar gross errors 
can be detected and potentially excluded quickly.  

Figure 2: Schematic of unsupervised anomaly detection

Figure 6: Time series of normalised standard deviation of background departures for AMSU-A channel 11 
from four different satellites. The statistics are computed over the southern hemisphere extra-tropics 

Figure 8: Left panel shows the ML predicted statistics (red) versus recent and current statistics being checked for surface 
pressure from moored buoy 23094 . The right panel shows the prediction error (blue) compared to the threshold.

Figure 7: (top) Background surface pressure field (contours) 
and first guess departures of surface pressure (in hPa) plotted 
as filled circles. Analyzed field and analysis departures of 
surface pressure are shown in bottom panel. The statistics
are on 30 April 2019.
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Once the anomaly detection has been performed 
separately for all data types, all detected events are 
grouped together in a warning basket. Each event is 
then augmented by a list of additional features 
reflecting common events from other data types, 
significant weather conditions, and the number of 
past occurrences of the event. A machine learning 
classifier (random forest) is then applied to define 
attributes of the detected warnings. These include 
false alarm (yes/no), slight event (yes/no), 
considerable event (yes/no), severe event (yes/no), 
cause (data/other) and action required (yes/no). The 
machine learning classifier has been trained using a 
population of previously generated warnings from the 
current operational system. 
The training set has been labelled to define the 
target attributes. Through the training process, the 
system is expected to learn the rules that lead to 
labelling decisions based on event attributes (see 
Figure 3). 
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Figure 7: Left panel shows the ML predicted statistics (red) versus recent and current statistics being checked for Channel 13 from Metop-B 
AMSUA. The right panel shows the prediction error (blue) compared to the threshold


