

All-Sky Geostationary Satellite Radiance Data Assimilation in JEDI Using CRTM

Greg Thompson, Fabio Diniz, Ben Johnson, and Ben Ruston

ITSC-24 Tromso, Norway, 20 March 2023

NWP and cloud physics

FV3 – JEDI interface with CRTM

Hydrometeor effective radii updated

Radiative effective radius, R_e , defined by 3rd moment divided by 2nd moment of the particle size distribution

Using the generalized gamma distribution:

$$N(D) = N_0 D^{\mu} e^{-\lambda D}$$

produces:

$$R_e = \frac{1}{2}(3 + \mu) / \lambda = \frac{1}{2} [3 + \mu] * \{ [6/(\pi * \rho_{water})] * [\Gamma(\mu + 1)/\Gamma(\mu + 4)] * (Q_c/N_c) \}^{1/3}$$

where Q_c is the liquid water content (kg/m³), N_c is the droplet number concentration (#/m³), ρ_{water} is 1000 kg/m³ water density, and μ is the "shape parameter," N_0 is the "intercept parameter," and λ is the "slope parameter."

Microphysical Parameterization

Hydrometeor species

Mass mixing ratios of:

- Cloud water (small cloud drops generally less than 50 microns diameter)
- Cloud ice (small?, shape?)
- Snow (spherical?, plate-like?)
- Rain (drizzle or rain generally larger than 50 microns diameter)
- Graupel (heavily rimed snow and/or hail)
- Hail (sometimes separate category from graupel; often not)

One-moment or two-moment

Predicting total number concentration in addition to mass mixing ratio

Does not really matter, because we can always formulate a one-moment scheme to appear like two-moment in mathematics to diagnose a total number concentration.

Particle Size Distributions

"Old School" distribution assumptions

Most one-moment schemes utilize constant N_0

Most one-moment schemes use $\mu = 0$ [inverse exponential]

 $N(D) = N_0 D^{\mu} e^{-\lambda D}$

New code is more generic

 N_0 can be diagnosed from other variables, e.g., Thompson graupel scheme

 $\boldsymbol{\mu}$ can be non-zero and/or diagnosed from other variables, e.g., Thompson cloud water scheme

Classical Marshal-Palmer distribution $N_0 = 8 \times 10^6 \text{ m}^{-4}$

Cloud Liquid Water Drop Size

Importance: Cloud water

Allowing μ to shift provides far greater range of cloud droplet effective size found in clean maritime airmasses distinct from heavily polluted airmasses.

effective radius

Cloud Ice Size

Cloud ice

GFDL ice radii (lines)

Observations

GFDL effective radii method

Thompson effective radii method

ABI G16 BT 8KM ObsValue Tb ch13 202

ABI G16 BT 8KM hofx Tb ch13 2022-02-14

ABI G16 BT 8KM hofx Tb ch13 2022-02-14

.

brightnessTemperature H(x) 2022-02-14T21:00:00Z Channel 13

min= -14 max= 14 mean= -0.1604 stdv= 5.081

brightnessTemperature H(x) 2022-02-14T21:00:00Z Channel 10

min= -14 max= 14 mean= -0.4002 stdv= 3.376

brightnessTemperature H(x) 2022-02-14T21:00:00Z Channel 10

min= -14 max= 14 mean= -0.4002 stdv= 3.376

First guess departures – GOES ABI

Mean

Standard deviation

VarBC

Water vapor (ABI ch08-10)

Longwave IR (ABI ch13-16)

Future Work

QC & BC

can we go "out on a limb?" – bias correct WV ~68-78° sensorZenithAngle cloud mismatches: obs vs. first guess correlated errors

DA Sensitivity Experiments

- GOES-16 & GOES-17
- 15 Feb 15 Mar 2022
- 01 31 Aug 2021
- 3-hourly vs. hourly
- 64 vs. 8 km subsampled data
- include visible wavelength

Thank you!

U.S. AIR FORCE

Questions