Assessing potential future constellations of small satellites carrying microwave sounders using the Ensemble of Data Assimilations method

Katie Lean⁽¹⁾, Niels Bormann⁽¹⁾, Jörg Ackermann⁽²⁾, Jean-Christophe Angevain⁽³⁾, Ralf Bennartz⁽⁴⁾, Janet Charlton⁽⁵⁾, Sabatino Di Michele⁽²⁾, Stephen English⁽¹⁾, Frank Fell⁽⁶⁾, Sean Healy⁽¹⁾, Bruno Picard⁽⁷⁾, Dirk Schüttemeyer⁽³⁾, Peter Senior⁽⁸⁾

ITSC-24, Tromsø, Norway, 16 – 22 Mar 2023

katie.lean@ecmwf.int

(1) ECMWF, (2) EUMETSAT, (3) ESA/ESTEC (4) Vanderbilt Uni. (5) JCR Systems Ltd, (6) Informus GmbH, (7) Fluctus SAS, (8) In-Space Missions Ltd

How much benefit can we achieve with MW sounders on small satellites?

Additional small satellites complement continuing "backbone" constellation of large satellites ESA study: Address broad questions about design for hypothetical constellations

EUMETSAT study: Build on framework to focus on future Sterna (previously AWS) constellation

The Ensemble of Data Assimilations (EDA) method

- EDA consists of:
 - Finite number of independent cycling assimilation systems
 - Uses real and added simulated observations
 - Observations, forecast model and SSTs perturbed to generate different inputs for each member
- Benefit of additional data measured by reduction in variation across different members – "EDA spread" → reducing forecast/analysis uncertainties
- Assumes errors of the simulated observations are realistic

Cheaper alternative but complementary to traditional Observing System Simulation Experiments (OSSEs) to assess potential of future observing systems

Simulation framework of small satellite data

*JCR Systems (2022) "Input Generation for Study to Assess Earth Observation with Small Satellites and their Prospects for Future Global Numerical Weather Prediction (SSat4-GNWP)". ESA Contract No: 400013468, Final Report

ECMUF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

ESA study small sat channel characteristics

	Frequency (GHz)	Bandwidth (MHz)	Sample NEDT* used (K)	Footprint (km)	Utilisation		
Loss of lowest freq < 50GHz	50.3	180	0.85	40	Temp sounding		
	52.8	400	0.60	40	Temp sounding		
	53.596	370	0.60	40	Temp sounding		
	54.4	400	0.60	40	Temp sounding		
	54.94	400	0.60	40	Temp sounding		
	55.5	330	0.65	40	Temp sounding	Less stratospheric	
	57.290644	330	0.65	40	Temp sounding		
	89	4000	0.25	20	Window/cloud detectio	ng	
	165.5	2800	0.55	10	Window/hum sounding		
	176.811	2000	0.65	10	Hum sounding		
	178.811	2000	0.65	10	Hum sounding		
	180.811	1000	0.80	10	Hum sounding		
	181.511	1000	0.80	10	Hum sounding		
	182.311	500	1.05	10	Hum sounding		
	ECMW	EUROPEAN CENTRE FO	R MEDIUM-RANGE WEATHER FORECAS	STS		5	

*JCR Systems (2022)

Scenarios probe different design aspects

- Add simulated observations to baseline of existing obs
- Baseline = reduced no. of MW sounders + full observing system
 - 4 MW temp/hum (Metop A/B and SNPP/NOAA-20)
- Small sat orbits minimise time to coverage but do not minimise overlap

0

JPSS 12

6

Metop

2′

18

Increasing benefit from adding more MW observations

Increasing benefit from adding more MW observations

Impact on wind from simulated data

Keys mechanisms to extract wind:

4D-Var derives wind info from temporal evolution of humidity/cloud features Wind info inferred through balance relationships

Impact also extends into stratosphere

Assessing future Sterna* constellation: building on earlier work

- Pathfinder Arctic Weather Satellite (AWS) expected in 2024
- Future constellation reference configuration: 3 orbital planes, 2 sats in each
- AWS: 19 channels (8 x 50GHz band, 5 x 183GHz band, 4 x 325GHz band, 1 x 89GHz, 1 x 165GHz)
 - Initial expts use well-established channels (i.e. exclude 325GHz)
- Different reference baseline of existing MW sounders
 - 2 x mid-morning (09:30), 2 x afternoon (13:30), 1 x early morning (~06:30), 1 x inclined orbit (GMI)
- Assess impact of Sterna and compare with existing MW instruments or whole satellite platform changes
- Future work:
 - Develop 325 GHz assimilation strategy
 - Assess additional impact of 325GHz

*Previously known as the AWS constellation

Impact of reference Sterna between 1 and 2 x full Metop platforms

Impact of reference Sterna between 1 and 2 x full Metop platforms

Key findings

• Temperature sounding capabilities produce significant additional spread reduction – worthwhile addition where sensibly accommodated

 Smaller constellations shows significant reduction in EDA spread – encouraging potential impacts of future Sterna constellation

 Comparison to real MW/platform denial expt suggest good benefit from Sterna – but future presence of large platforms is still essential

• Continued reduction with adding more observations but rate of reduction slows (more for humidity) – increased benefit gradually less cost effective

Visiting scientist opportunity at ECMWF for US citizens/permanent residents

- Position at CISESS/UMD, mostly based at ECMWF
- Project to study the expected impact of NOAA's planned future MW sounders in global NWP
 - Use ensemble methods to simulate the impact
- **<u>Unique opportunity</u>** for a talented scientist interested in satellite data, data assimilation, NWP
 - US citizenship or permanent residency (Green Card) required
- Duration: 1 year, with possible extension for a further year
- Contact: <u>Niels.Bormann@ecmwf.int</u>
- Vacancy notice: <u>https://essic.umd.edu/joom2/index.php/employment</u>

Thank you for your attention!

Impact extends into stratosphere

- Weighting functions of MW relatively broad
- Stratospheric sensitivity from highest peaking small sat channel (~80hPa)
- Cycling assimilation propagates changes vertically
- Stratospheric channels from real MW have relatively greater impact in lower pressure

Higher spatial sampling more beneficial for temperature

Additional data observing at similar location and time – not better temporal sampling

Significant impact of Sterna highlighted by real MW obs

Limitations and lessons

- Possible under-estimation of humidity impact
 - Simulation from high resolution analyses smoother than reality
 - Resolution of EDA spread calculation
- Sensitivity to practical choices e.g. phasing and thinning
 - Mix polar and even lower inclined orbit to address tropical coverage?
- Dependent on current MW assimilation scheme
 - E.g. treatment of error correlations, use over complex surfaces
- Assume random/systematic obs errors are similar to present MW obs
 - Adequate corrections required using current/new techniques