

Satellite radiance assimilation at the Bureau of Meteorology

Chris Tingwell & Fiona Smith, Bureau of Meteorology

chris.tingwell@bom.gov.au

ITSC-XXIII: Virtual Meeting, 24 - 30 June 2021

Australian Government Bureau of Meteorology

Jin Lee, Jim Fraser, David Howard, Leon Majewski, Monika Krysta, Susan Rennie, Andrew Smith, Peter Steinle, Yi Xiao.

Acknowledgement: Met Office

Thank you to our collaborators

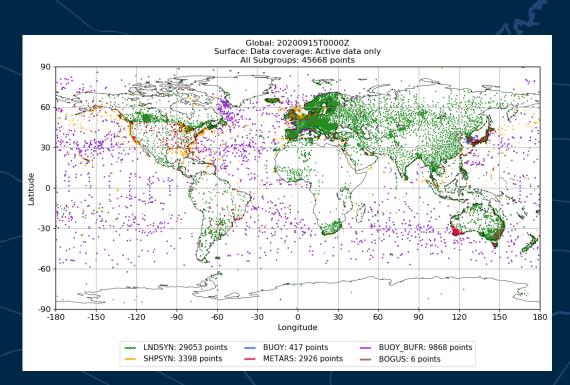
Bureau of Meteorology

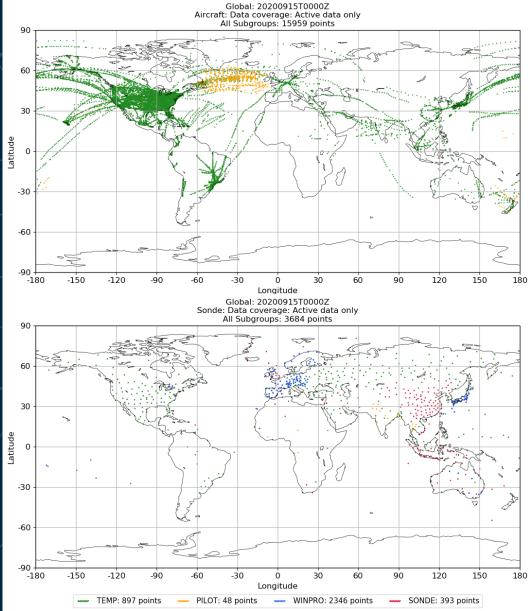
• Since the last ITSC,

- our ACCESS-G global NWP system had a mid-term upgrade which included the addition of new radiance data sources, hourly background files and new background error covariances, delivering a significant increase in forecast skill,
- our latest ACCESS-C convection-allowing NWP suites (now including hourly 4D-Var assimilation cycles) became operational, and
- work is now well advanced on the development of a National Analysis System which features multi-pass hourly 4D-Var + 3D-Var assimilation cycles, and includes radiance data assimilation.
- Future work towards the next ACCESS upgrades includes extending our use of radiance data and the addition of new data sources.

_

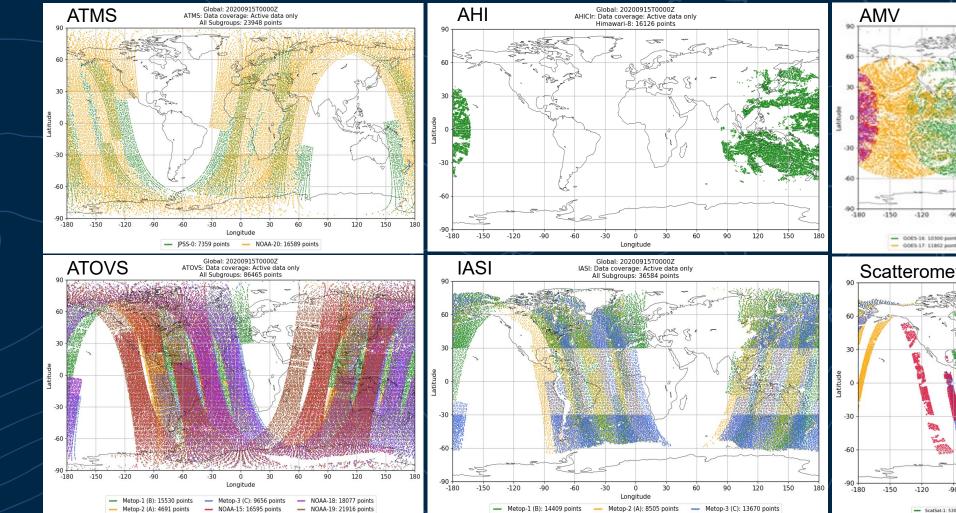
Australian Government Bureau of Meteorology


Summary of ACCESS APS3 systems

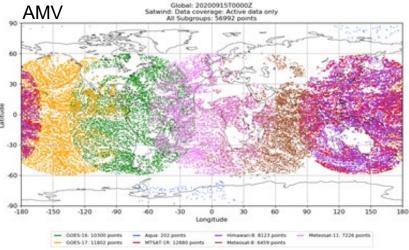

and the second second				
TC		Global (ACCESS-G3 and GE3)	City (ACCESS-C3 and CE3)	Tropical Cyclone (ACCESS-TC3)
	Deterministic	N1024 (12 km), L70 00, 06, 12, 18 UTC	1.5 km, L80 6 domains Hourly	4 km, L80, Up to 3 relocatable domains 00, 12 UTC
	Ensemble	N400 (36 km), L70 18 members (plus lagging) 00, 06, 12, 18 UTC	2.2 km, L80 12 members (plus lagging) 00, 06, 12, 18 UTC*	
	Data assimilation	T-3 :T+3 window Hybrid 4D-Var (N144 + N320)	C3: Hourly cycling 4D-Var	T-3:T+2 window 4D-Var
	Bias Correction	VarBC, with static scan bias correction	Uses VarBC coefficients from G3	Uses VarBC coefficients from G3
	SST analysis	GAMSSA	RAMSSA	GAMSSA
	Soil moisture analysis	EKF analysis of screen temperature & humidity and ASCAT soil moisture	Uses Soil moisture analysis from G3	Uses Soil moisture analysis from G3

Bureau of Meteorology

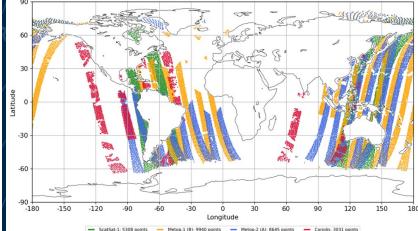
Observations coverage: Aircraft, Surface and Sonde



Observations coverage: Satellite observations


Australian Government Bureau of Meteorology

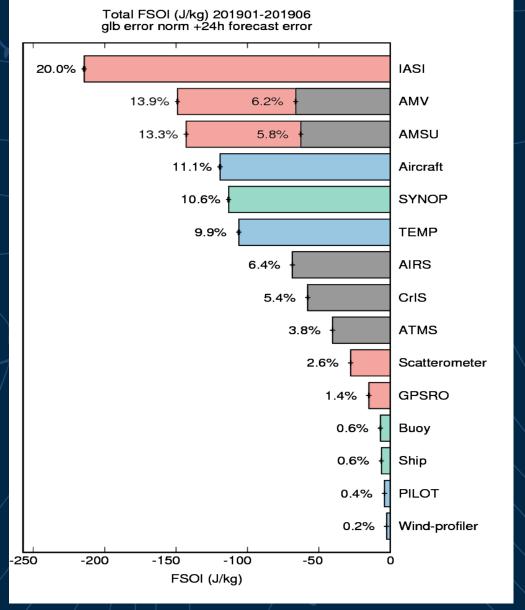
6


Radiances

Winds

Global: 20200915T0000Z Scatterometer Scatwind: Data coverage: Active data only All Subgroups: 26924 points

Impact of observations in ACCESS-G


Australian Government Bureau of Meteorology

Total Forecast Sensitivity to Observations Impacts (FSOI) in ACCESS-G2 January – June 2019

Reduction in 24 hour forecast error measured by global moist energy norm.

Red: space-based observations Blue: upper air network Green: surface observations

(contributions from NOAA/NASA satellite platforms)

Recent changes in observation usage – ACCESS-G3

	ACCESS-G2	ACCESS-G3 (from July 2019)	ACCESS-G3.1 (from June 2020)
Hyperspectral IR sounder (LEO)	AIRS CrIS – S-NPP IASI – Metop-A, Metop-B	AIRS CrIS – S-NPP IASI – Metop-A, Metop-B	AIRS CrIS – S-NPP, <mark>NOAA-20</mark> IASI – Metop-A, Metop-B, <mark>Metop-C</mark>
IR sounder (GEO)		Himawari AHI CSR	Himawari AHI CSR
Microwave sounders (LEO)	ATMS – S-NPP ATOVS – N18, N19, Metop-A, Metop-B	AMSR-2 ATMS – S-NPP ATOVS – <mark>N15</mark> , N18, N19, Metop-A, Metop-B SSMIS	AMSR-2 ATMS – S-NPP, <mark>NOAA-20</mark> ATOVS – N15, N18, N19, Metop-A, Metop-B, <mark>Metop-C</mark> SSMIS
GNSS measurements	GPSRO – <mark>COSMIC</mark> , TerraSar-X, TanDem-X, Metop-A, B	GPSRO – TerraSar-X, TanDem-X, Metop-A, Metop-B, FY-3C <mark>GPS WV</mark>	GPSRO – TerraSar-X, TanDem-X, Metop-A, Metop-B, <mark>Metop-C</mark> , FY-3C, GPS WV
AMV (mostly GEO)	Himawari, GOES-16, <mark>GOES-15</mark> , Meteosat-8, Meteosat-11, MODIS (Aqua)	Himawari, GOES-16, <mark>GOES-15</mark> , Meteosat-8, Meteosat-11, MODIS (Aqua)	Himawari, GOES-16, <mark>GOES-17</mark> , Meteosat-8, Meteosat-11, MODIS (Aqua)
Scatterometer	ASCAT – Metop-A, B, <mark>Windsat</mark>	ASCAT – Metop-A, B, <mark>Windsat</mark>	ASCAT – Metop-A, B, <mark>ScatSat-1</mark>

Australian Government Bureau of Meteorology

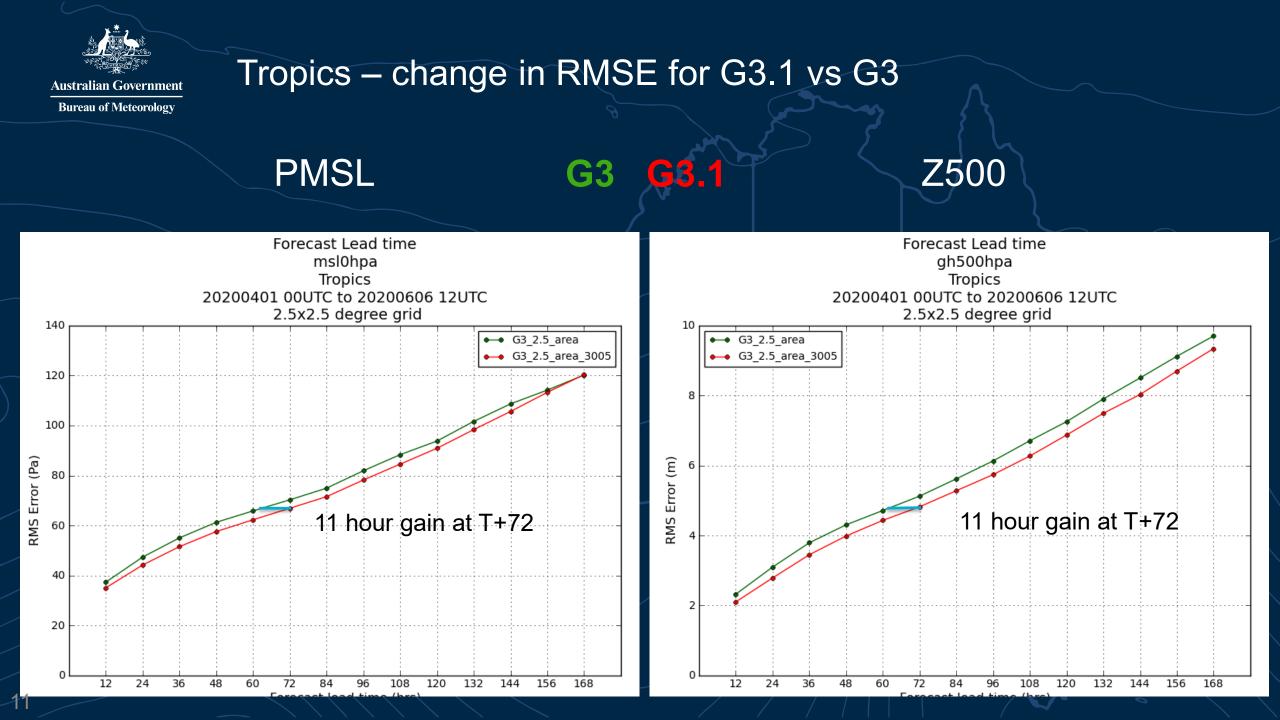
G3.1 trial Scorecard

Australia

Anomaly Correlation and S1 Skill Score on left

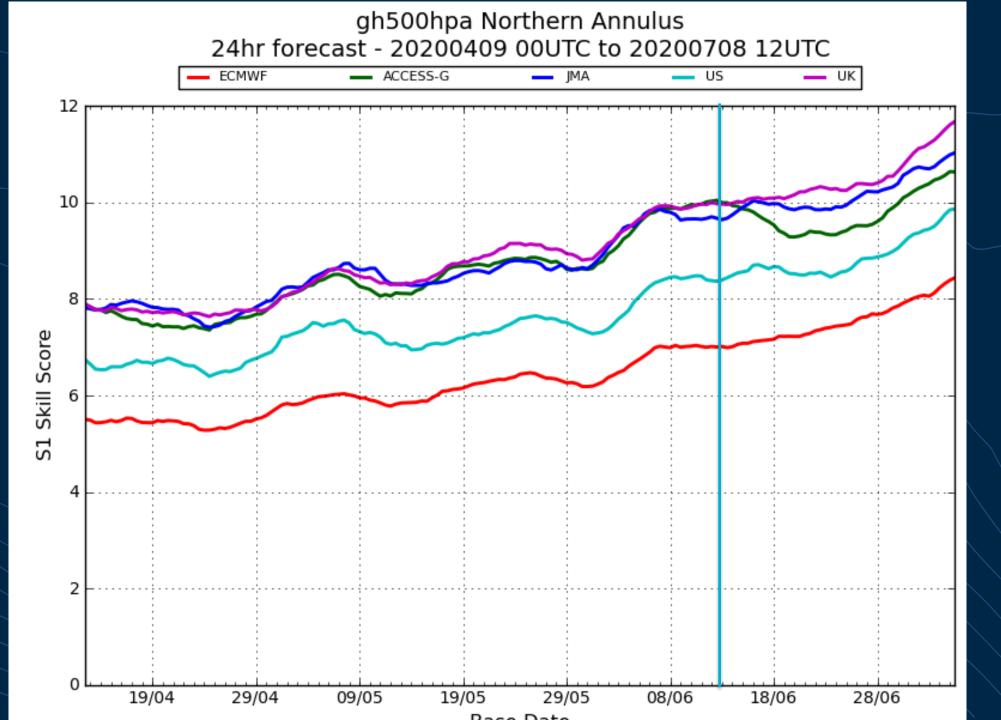
Bias and RMSE on right

Statistically significant values in colour: +ve Blue


9

	Australia 🖲									Austral			
	Parameter	Level (hPa)	24	48	72	96	120	144	168	Paramete			
					100	A S	A S	A S	A S	A S	A S	A S	
		250	AS	A S	A S	A S	A S	A S	A S				
	Geopotential Height	500	AS	A S	A S	A S	A S	A S	A S	Geopoten			
		<mark>8</mark> 50	AS	A	A S	A S	A S	A S	A S				
	Mean Sea-Level Pressure	0	A	A	A S	A S	A S	A S	A S	Mean Sea			
<u> </u>	Temperature	100	AS	AS	AS	AS	A S	A S	A S				
		250	AS	AS	A	A S	A S	A S	A S				
		500	AS	AS	A S	AS	A S	A S	A S	Temperatu			
2		850	AS	AS	AS	A S	A S	A S	A S				
		100	AS	AS	AS	A S	A S	A S	A S				
		250	AS	AS	A S	A S	A S	A S	A S	Wind U-C			
_	Wind U-Component	500	AS	AS	A S	A S	A S	A S	A S	wind 0-C			
_		850	AS	A S	A S	AS	A S	A S	A S				
	Wind V-Component	100	AS	AS	AS	A S	A S	A S	A S				
		250	AS	AS	AS	A S	A S	A S	A S	Wind V-C			
		500	AS	A	A	A S	A S	A S	A S	vvinu v-Ci			
		850	AS	A S	A S	A S	A S	A S	A S				

Australia 🕕


Parameter	Level (hPa)	24	48	72	96	120	144	168
	100	BR	BR	BR	B R	B R	B R	B R
	250	BR	B R	B R	B R	B R	B R	B R
Geopotential Height	500	BR	BR	BR	B R	B R	B R	B R
	850	BR	BR	B R	B R	B R	B R	B R
Mean Sea-Level Pressure	0	BR	BR	B R	B R	B R	B R	B R
	100	BR	BR	BR	B	B R	B R	B R
	250	BR	BR	B	B R	B R	B R	B R
Temperature	500	BR	BR	B R	B R	B R	B R	B R
	850	BR	B R	B R	B R	B R	B R	B R
	100	BR	BR	B	B R	B R	B R	B R
Mind II Comment	250	BR	BR	B R	B R	B R	B R	B R
Wind U-Component	500	BR	BR	B R	B R	B R	B R	B R
	850	BR	B R	B R	B R	B R	B R	B R
	100	BR	BR	B	B R	B R	B R	B R
	250	BR	BR	B R	B R	B R	B R	B R
Vind V-Component	500	BR	BR	B R	B R	B R	B R	B R
	850	B	B R	B R	B R	B	B R	B R

	Tropics 🖲									Tropics 🖲								
	Parameter	Level (hPa)	24	48	72	96	120	144	168	Parameter	Level (hPa)	24	48	72	96	120	144	168
Australian Government		100	AS	AS	AS	AS	AS	AS	AS		100	BR	BR	BR	B	B R	B R	B R
Bureau of Meteorology		250	AS	AS	A	A	A S	A	A S		250	BR	BR	BR	BR	BR	B	B R
G3.1 trial	Geopotential Height	500	AS	AS	A	A	AS	A S	A S	Geopotential Height	500	BR	BR	BR	BR	BR	BR	B R
Scorecard		850	AS	AS	AS	AS	AS	A S	A S		850	B	B	B	B	B R	B R	B R
	Mean Sea-Level Pressure	0	AS	AS	AS	AS	A	A	A S	Mean Sea-Level Pressure	0	R	B	B	B	B	B R	B R
Tropics		100	AS	AS	AS	A	AS	A	A S		100	B	B	B	BR	BR	BR	B
порісь		250	AS	AS	A	AS	A	A	A S	Temperature	250	BR	BR	BR	B	B	B R	B R
A mamaalu (Temperature	500	AS	AS	AS	AS	AS	AS	AS		500	BR	BR	B	B R	B R	B R	B R
Anomaly Correlation and		<mark>8</mark> 50	AS	AS	AS	AS	A S	AS	AS		850	BR	BR	BR	BR	BR	B R	B R
S1 Skill Score		100	AS	AS	AS	AS	AS	AS	A S		100	BR	B	B	B R	B R	B R	B R
on left	Wind U-Component	250	A S	A S	A S	AS	AS	A S	A S	Wind U-Component	250	BR	B	B	B R	B R	B R	B R
Bias and RMSE	wind o component	500	AS	AS	AS	AS	AS	AS	A		500	B R	B	B	B	B	B R	B R
on right		850	AS	AS	AS	AS	AS	AS	A S		850	BR	B	B	B R	B R	B R	B R
Statistically		100	AS	AS	AS	AS	A S	AS	A S		100	B R	B R	B	B	B	B R	B R
significant	significant values in colour: Wind V-Component	250	AS	AS	AS	AS	A S	A S	A S	Wind V-Component	250	R	B	B	B	B R	B R	B R
		500	A S	A S	A S	A	A S	A	A S		500	B	B	B	B	B	B	B R
+ve Blue 10 -ve Red		850	AS	AS	AS	A	AS	A S	A S		850	B	B	B	B	B	B R	B R

Australian Government Bureau of Meteorology

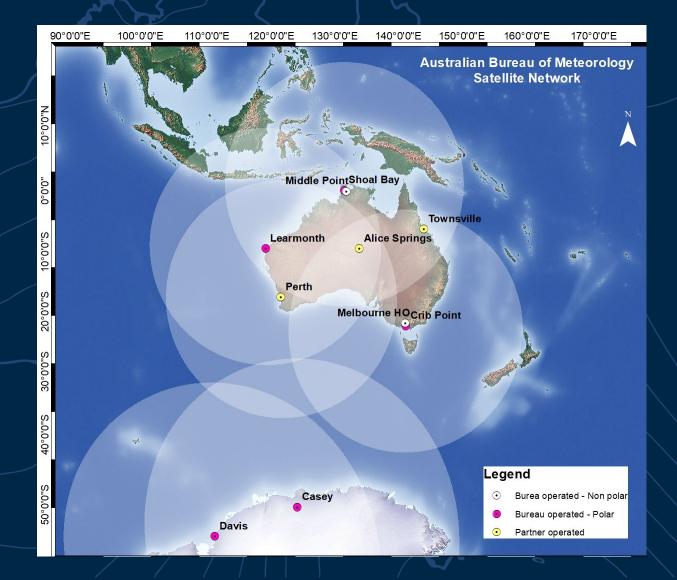
+24h S1 skill score 500 hPa geopotential hgt for Northern Hemisphere, pre/post ACCESS-G3.1 upgrade (vertical line).

12

Observation usage across all models (satellites in red)

	Global (ACCESS-G3)	City (ACCESS-C3)	Tropical Cyclone (ACCESS-TC3)
Hyperspectral IR sounder (LEO)	AIRS, CrIS, IASI	AIRS, CrIS, IASI	AIRS, CrIS, IASI
IR sounder (GEO)	Himawari AHI CSR		
Microwave sounders (LEO)	AMSR-2, ATMS, ATOVS, SSMIS	ATMS, ATOVS	ATMS, ATOVS
GNSS measurements	GPSRO, GPS WV	GPS WV	GPS WV (if in domain)
AMV (mostly GEO)	Himawari, GOES-16, GOES-17, Meteosat-8, Meteosat-11, MODIS	Himawari	Himawari (Meteosat-8, GOES-17 if in domain)
Scatterometer	ASCAT, ScatSat-1	ASCAT	ASCAT, ScatSat-1
Conventional observations	AIREPS, AMDAR, BUOY, METAR, PILOT, SHIP, SYNOP, TEMP, WINPRO	AIREPS, AMDAR, BUOY, METAR, PILOT, SHIP, SYNOP, TEMP, WINPRO	AIREPS, AMDAR, BUOY, METAR, PILOT, SHIP, SYNOP, TEMP, WINPRO
Radar		Doppler Winds	
Other	TC BOGUS		TC BOGUS

Bureau Direct Reception of LEO sounders for ACCESS-C3

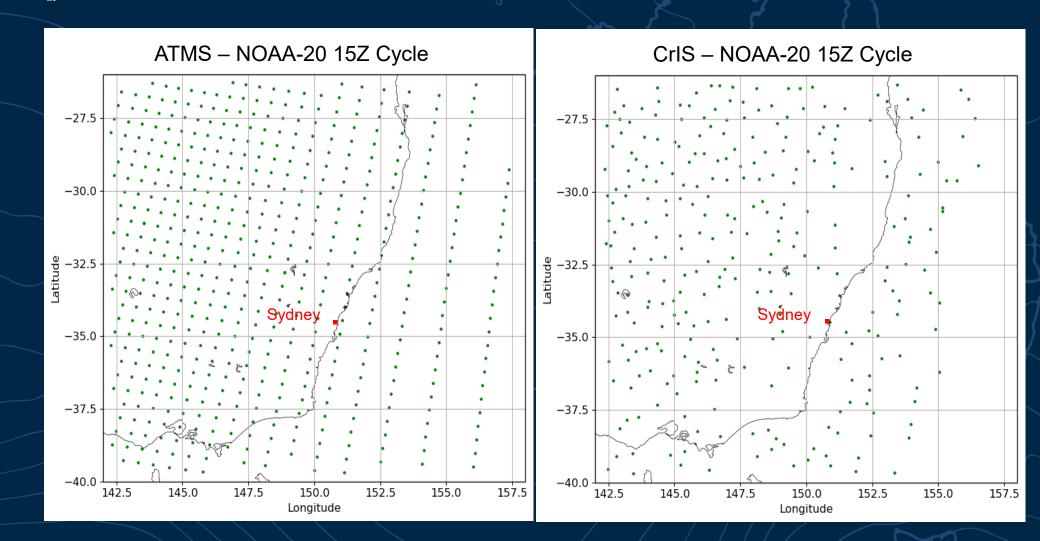

The Bureau operates three mainland receiving stations and two in Antarctica

- Shoal Bay, Learmonth, Crib Point
- Casey, Davis

Three additional reception sites are operated by partner agencies

Perth, Alice Springs, Townsville

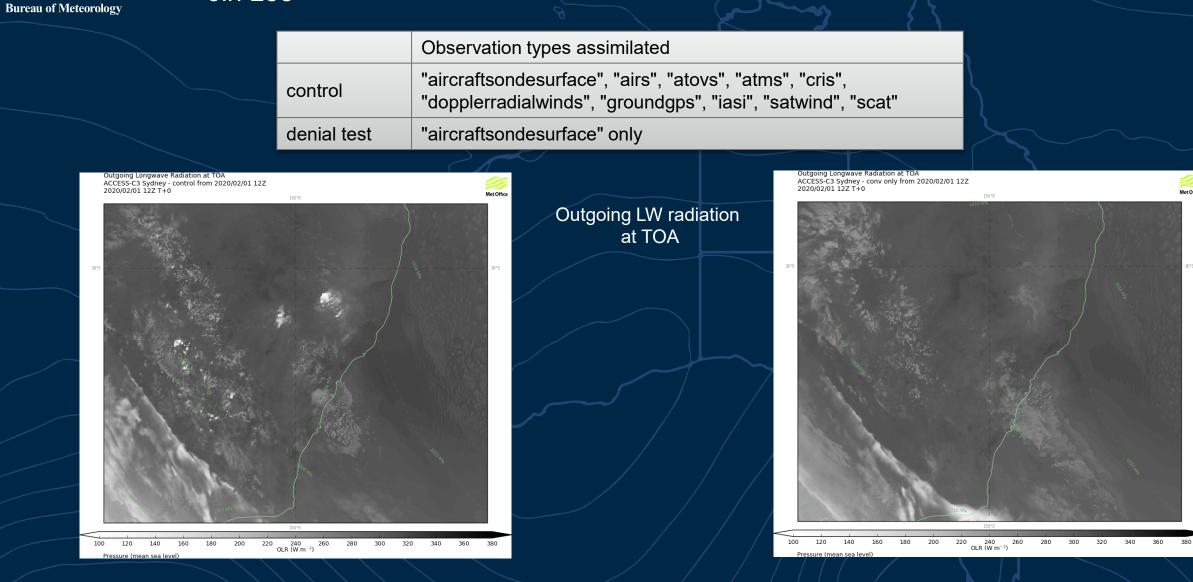
Observations from these sites come in much more quickly, allowing us to use sounder data in ACCESS-C3



=

Australian Government Bureau of Meteorology

S-NPP and NOAA-20 data in C3 Sydney model

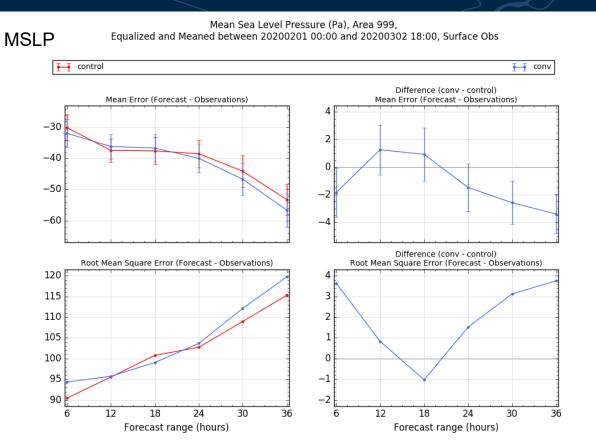

15

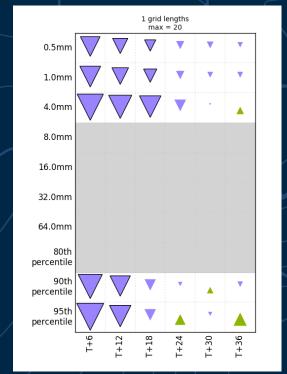
Australian Government

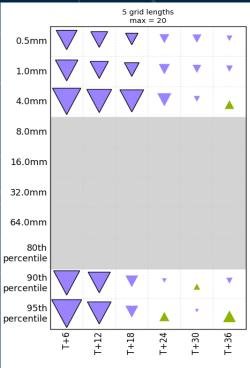
Impact of satellite observations in ACCESS-C3 (1)

Jin Lee

Conventional only

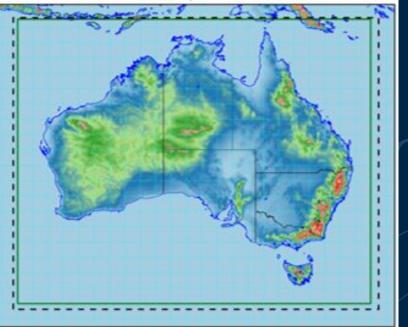

All observations


Impact of satellite observations in ACCESS-C3 (2)


Australian Government Bureau of Meteorology Jin Lee

Conclude: significant positive impact on ACCESS-C3 forecast skill from satellite observations as measured by a number of skill metrics.

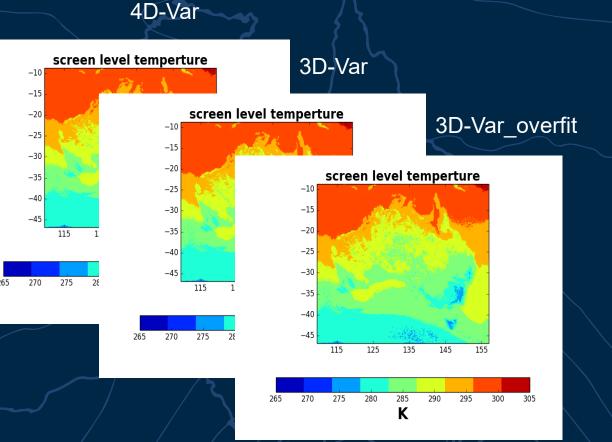
% diff FSS Conv. vs All-obs 6h accum. precip.



± 1 standard error bars calculated assuming independent observations

National Analysis System (NAS) – due in 2022

Australian Government Bureau of Meteorology



Domain covers Australia

- size 2400 x 1920 x L90
- ~ 2.2 km

Based on ACCESS-C

Produces analyses reflecting the current meteorological situation over Australia Increases forecaster situational awareness

- Hourly RUC analyses (3 types)
 - 4D-Var (including satellite radiances)
 - 3D-Var
 - 3D-Var overweighting observations

Future work

- Addition of many new instruments already in space
 - Extra GEO radiances
 - Radiances from Chinese and Korean satellites
 - (Extra satellite winds: Polar orbiting AMVs, more scatterometers, Aeolus Lidar horizontal line of sight winds
 - Extra GNSS-RO from COSMIC-2 and ground-based GNSS data)
- More use of microwave observations over land, and higher resolution sounder observations in ACCESS-C3
- Addition of Met Office scheme for all-sky microwave data assimilation
- Significant expansion of our capacity to assess observation impacts on forecasts
- Use GEO radiances and GeoCloud retrievals in ACCESS-C3 (W.I.P.)

Thank You

chris.tingwell@bom.gov.au fiona.smith@bom.gov.au