

ropulsion Laboratory rnia Institute of Technology

RAMSES-II: NASA's Microwave Sounder Retrieval System

Bjorn Lambrigtsen, Mathias Schreier, Evan Fishbein

Jet Propulsion Laboratory, California Institute of Technology

ITSC-24, Tromsø, March 16-22, 2023

Jet Propulsion Laboratory California Institute of Technology Post-EOS continuity: Use NOAA sounders for NASA research?

NASA formed science team to address this question

- 2011-2014
- Team analyzed quality of S-NPP instruments and algorithms

Assessment report delivered in 2013

- Conclusion #1: Instrument quality is adequate
- Conclusion #2: NOAA algorithms are *not* adequate
- Conclusion #3: NOAA data processing/handling is not adequate

Recommendations formed the basis for ROSES solicitations

- Develop new retrieval algorithms for all S-NPP/JPSS instruments
- Set up NASA data processing and product distribution/archiving

Subsequent sounder science team

- Instrument-level (L1b = SDR) responsibility assigned by NASA
 - CrIS: U. Wisconsin
 - ATMS: JPL
- Two retrieval (L2 = EDR) algorithms "down-select" through ROSES'17
 - One CrIMSS algorithm \rightarrow "CLIMCAPS" (C. Barnet)
 - One ATMS algorithm \rightarrow "RAMSES" (B. Lambrigtsen)
- Algorithms are delivered to "Sounder-SIPS" at JPL for assessment
- Operationalized code delivered to GES/DISC DAAC for processing

Retrieval Algorithm for Microwave Sounders in Earth Science

- Initially funded under ROSES'13/NPP (2014-2017)
- Continued under ROSES'17/TASNPP (2018-2021)

Development path

Two approaches pursued:

- Aqua AMSU/HSB system adapted for S-NPP/ATMS (Fishbein) → RAMSES-I
- New development (Schreier)

Eventual merger:

• Aqua RTM ("MitRTA") + new development for the rest → RAMSES-II

Current status of RAMSES-II

- GES DISC processing of baseline version (V1) in 2021 (limited data set for testing & assessment)
- GES DISC processing of mature version (V3) in 2023 table below)

Description	Collection Name	DOI
Sounder SIPS: Suomi NPP ATMS Level 2	SNDRSNML2RMS 3	10.5067/FT9GRABK1CMK
RAMSES2 Standard: Atmosphere,		
precipitation and surface geophysical		
state V3		
Sounder SIPS: Suomi NPP ATMS Level 2	SNDRSNML2RMSSUP 3	10.5067/KMEMD53MTTU8
RAMSES2 Support V3		
Sounder SIPS: JPSS-1 ATMS Level 2	SNDRJ1ML2RMS 3	10.5067/69Y2R9BJAJS3
RAMSES2 Standard: Atmosphere,		
precipitation and surface geophysical		
state V3		
Sounder SIPS: JPSS-1 ATMS Level 2	SNDRJ1ML2RMSSUP 3	10.5067/WEO3KIK1GBGT
RAMSES2 Support V3		

GES DISC Dataset: Sounder SIPS: Suomi NPP ATMS Le...

disc.gsfc.nasa.gov

The Foundation is a Testbed Concept				
Language	Fortran 2003			
Input	HAMSR, ATMS, AMSU/MHS			
RTMs	CRTM, RTTOV, MITrta			
Background	ECMWF, WRF, MERRA-2			
Advantage	Modular, extendableGood for comparisons			
Disadvantage	 Difficult to create uncertainty and quality control Slow processing 			
RAMSES-II Approach				
Select specific components	 Input: ATMS L1B (NASA SIPS) RTA: MITrta Background : MERRA-2 Solver: LMBM (Karmitsa) 			
Focus on	Speed and ReprocessingUncertainty estimatesGood quality control			

VIITrta		Evan Fishbein upgraded code with help from Phil Rosenkranz		
anguage	Fortran77	Language	Upgrade to Fortran 2003	
/ersion	Developed for AMSU/HSB	Version	Upgrade to ATMS (Coefficient upgrade)	
Author	P. Rosenkranz	Author	P. Rosenkranz with E. Fishbein	
dvantage	 Reliable (used for EOS AMSU/HSB) Source code available Reliable spectroscopy Fast semi-analytical Derivatives <i>Fast !!!</i> 	Main Changes	 Code more modular Upgrade readability of the entire system Easier switch between instruments Extended surface module (added selection of subroutines, e.g. FASTEM) Upgraded matrix multiplication Extensive validation with CRTM and RTTOV Upgraded I/O-interfaces Easier subroutine access to RTA and Jacobians netCDF I/O 	
			 Plaster subroutine access to RTA and Jacobians netCDF I/O Library compilation (easier plug-in-and-play) 	

RAMSES-II : Basic retrieval

- Basic product in netcdf
- Non-standardized, often legacy
- Sigma-pressure levels (72)

Profile parameters

- Specific humidity
- Temperature
- Ice/Liquid water

Other observables:

- Rain rate
- Land/Ice/Snow coverage

Additional information:

- Error/Quality
- Convergence
- Surface height
- Lat/Lon/scan angle

RAMSES-II Post processor

- Retrieval and support product in netcdf
- Standardized by NASA Sounder SIPS for easier comparison
- Constant pressure levels (standard 27, support: 100)

 Basic Profile parameters Specific humidity Temperature Ice/Liquid water 	 Additional Derived Parameters (selection) Relative humidity Saturation over water/ice Tropopause information (height, strength,) Near surface information (t,qv, relative hum.) 	
Other Observables:Rain rateLand/ice/snow coverage		Auxiliary information:Basic retrieval on sigma levelsBackground
 Additional information (selection): Error/Quality Convergence Surface height Geopotential height and uncertainty Global attributes (version, L1B-files, contact, processing date,) 		 Satellite-information (selection): Scan angle/azimuth/zenith Satellite position/velocity Lat/lon Ascending/descending node Field of View-Polygon Time (local/UTC/TAI)

RAMSES-II : Basic examples

- T at sigma level = 50
- qv at sigma level =50

RAMSES-II/Lambrigtsen

RAMSES-II Post processor examples

- relative humidity at 500 hPa
- Near surface temp
- Tropopause pressure height

1.0 🛏

• 275 • Kelvin

60000 40000

ITSC-24, Tromsø, March 16-22, 2023

- Saturation over liquid at 500 hPa
- Geopotential height at 600 hPa
- Satellite local time

Available information content

Averaging Kernel Examples

Averaging Kernels - Example

- For ATMS and MITrta
- Most information in the upper troposphere
- Taken from random spot in California in Winter

Upper panel :

- Temperature Kernel
- Most information in the upper troposphere and beyond
- Total DoF ~6.2
- Information in PBL available, but limited (1000-800 hPa: DoF ~0.2)

Lowe Panel:

- Water vapor kernel
- Most information in the upper troposphere
- Total DoF ~4.4
- Information in PBL available, but limited (1000-800hPa: DoF ~0.3)

Global information content

Not very different from IR sounders! See, e.g., Smith, N. and Barnet, C.D., 2020. CLIMCAPS observing capability for temperature, moisture, and trace gases from AIRS/AMSU and CrIS/ATMS. Atmospheric Measurement Techniques, 13(8), pp.4437-4459.

Degrees of Freedom around the Globe – Statistical Variation

Current retrieval : no scattering

- Calculate degrees of freedom
- Calculate retrieval without scattering
- Measure of "success " convergence

Left panels:

- DOFs for Temperature (top) and water vapor (lower)
- Filtered by snow/ice and rain

Right panel :

- Histograms of DOFs (Filtered by good quality)
- > Summary:
- Range for temperature is 4-6, for water vapor it is 3-5
- Quality control drops useable observations by half (polar observations get filtered)
- > But quality filtering has no big effect on distribution

RAMSES-II/Lambrigtsen

6

Rain and unusable profiles

How many rainy cases are there statistically?

Note. Precipitation is derived from a "borrowed" regression algorithm. Laviola, S., & Levizzani, V. (2011). The 183-WSL fast rain rate retrieval algorithm: Part I: Retrieval design. Atmospheric Research, 99(3-4), 443-461.

Rain fraction: Global (upper set), ±65° (lower set)

Upper panel:

Fraction of Stratiform rain

Middle panel :

• Fraction of Convective rain

Lower panel :

- Total sum
- Timeline :
 - January, April, July, October 2013 and 2015
- Rain fraction makes up around ~ 10% of the data
- Slight variation with season, highest in July
- Reason seems to be stratiform cases
- Stratiform cases are ~ 6-8%

Next version: Add scattering

Global and statistical changes

Switch code, when rain is in scene

- Calculate degrees of freedom
- If stratiform, use scattering
- Measure success of convergence

Upper panel:

- DOFs for Temperature and water vapor
- Some gaps filled

Lower panel :

- Histograms of DOFs (lat +/- 65)
- Left side : all DOFs after filtering for snow/ice
- Right side : Filtered by quality
- Summary:
- Small effect, but visible: more 3-DOFs, especially for water vapor
- slightly diminished by quality control

Experimental performance with scattering

Local changes when adding scattering

5.48

4.11

2.74

-1.37

0.00

Justification, based on examples on a random day

Upper left panel:

- Random observation of rain rate
- Some Stratiform rain
- Mainly Convective rain

Lower right panels :

- Zoom into significant rain area
- Temperature retrieval at 500 hPa
- Upper panel : no scattering
- Lower panel : with scattering

Lower left panel :

- Same, but for water vapor
- > Summary:
- Strong convective rain still flagged as bad
- However: observations around cells get "closer to center" with scattering
- May seem small, but means an improvement of 30-50 km

RAMSES-II/Lambrigtsen

Current status and future plans

Microwave Retrieval RAMSES-II

• Current Release : Version 3

- Based on MITrta
- Mainly profile information (temperature and water vapor)
- Also regression info (rain rate, snow cover)
- Full SNPP and JPSS1 data sets, JPSS2 when available

• Available information content:

- Averaging Kernels available on Demand (large size)
- DoF analysis shows a narrow Gaussian variation with regional dependent information content
- Temperature-DoF peaks at 5 (~50%), water vapor peaks at 4 DoF (55%)
- Current DoF in PBL (between 1000-800 hPa) :
 - ~0.2 for temperature, ~0.3 for water vapor
- Outlook: Fill the gap getting rainy cases
 - Currently testing, if it makes sense to add scattering code to increase sample size
 - Preliminary results:
 - Change in global information is content low
 - Mainly reasonable for case study interests

Our goal is to configure RAMSES-II to process all MW sounder data from 1998 onwards: NOAA-15 to -17: AMSU-A + AMSU-B NOAA-18 and -19: AMSU-A + MHS Aqua: AMSU-A + HSB Metop-A to -C: AMSU-A + MHS SNPP and JPSS: ATMS