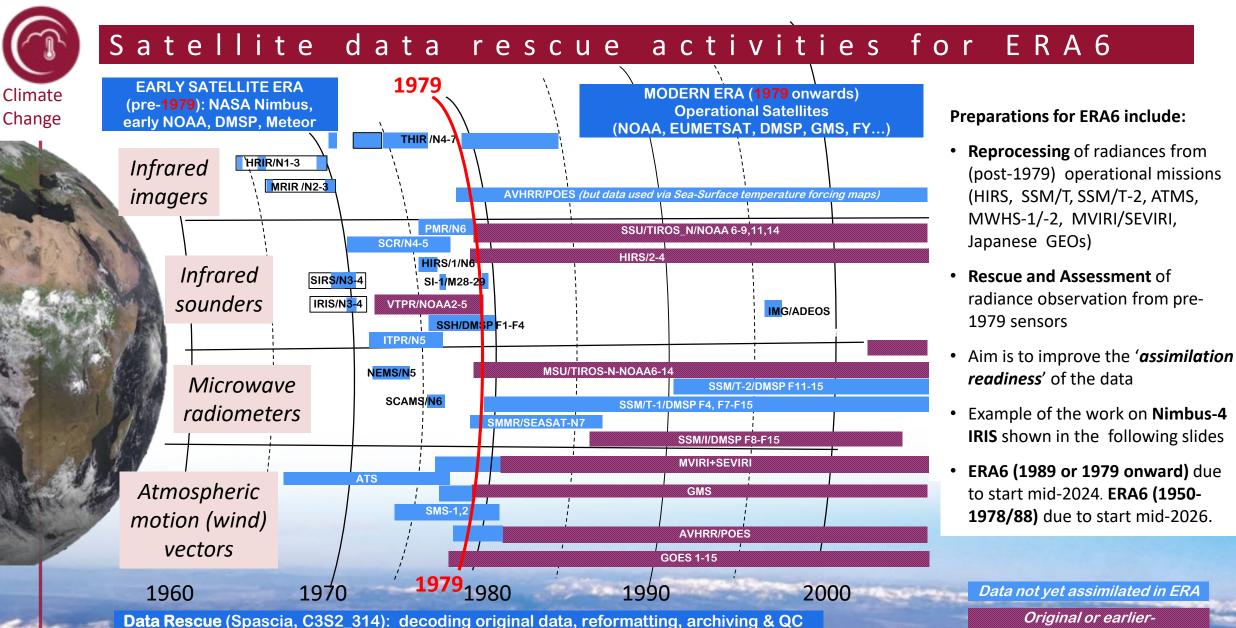
Preparations for ERA6: The assimilation of reprocessed and rescued radiance observations

Climate Change

Bill Bell¹, Hans Hersbach¹, Paul Berrisford¹, András Horányi¹, Joaquin Muñoz Sabater¹, Julien Nicolas¹, Raluca Radu¹, Dinand Schepers¹, Adrian Simmons¹, Cornel Soci¹, Adrien Oyono Owono¹, Roberto Ribas¹, Martin Suttie¹, Jörg Schulz², Viju John², Timo Hanschmann², Paul Poli¹, Pascal Prunet³, Andrzej Klonecki³, Carsten Standfuss³, Jon Mittaz⁴, Tom Hall³, Bruno Six⁵, Jérôme Vidot⁶, Bruna Barbosa Silveira⁶, Pascale Roquet⁶, Emma Turner⁷, Roger Saunders⁷.

ECMWF, Reading, UK.
EUMETSAT, Darmstadt, Germany.
Spascia, Toulouse, France.
University of Reading, Reading, UK.
ICARE, University of Lille, Lille, France.
Météo-France -CNRS, Lannion, France.
Met Office, Exeter, UK.

ITSC-24, Tromso



- Preparations for ERA6 : reprocessed & rescued satellite data
- Assimilation of IRIS hyperspectral radiances (1970)
 - SH analyses and forecasts;
 - Southern polar winter biases in the stratosphere
- Next steps: testing weak constraint 4D-Var model error corrections using IRIS
- Summary

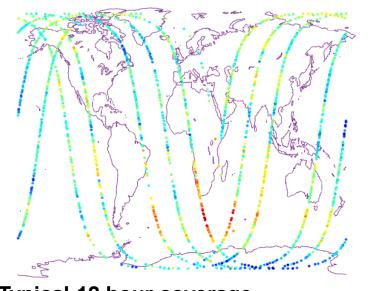
reprocessed data version

assimilated in ERA5

Reprocessing (EUMETSAT, C3S2_310): recalibration, navigation, quality assessment

Both activities aim to improve assimilation readiness of these datasets for ERA6 and high-resolution (regional) reanalyses, and also support ECV production

Initial experiments assimilating IRIS in the IFS

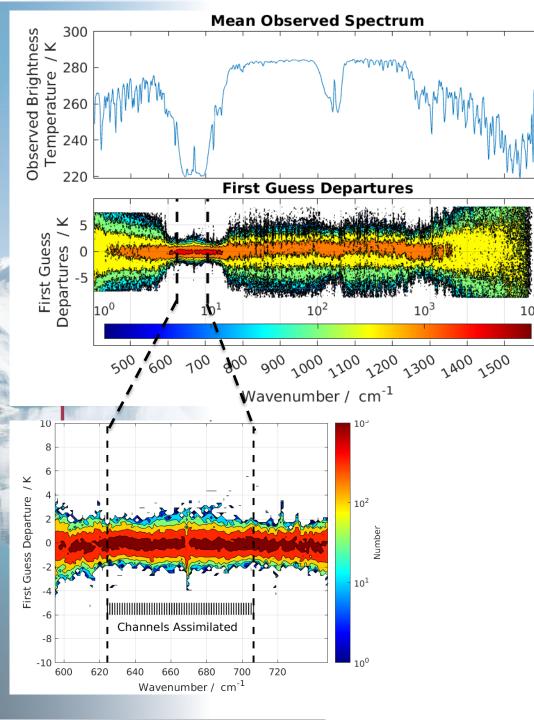

3

0 T Channel 193)

- C- C- C- FG departure /

-3

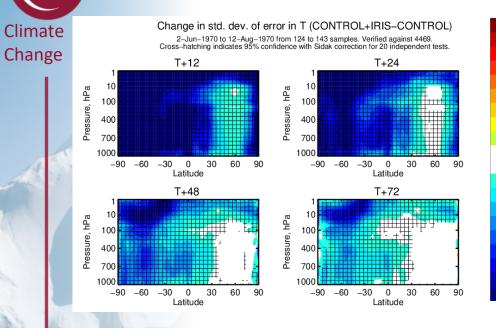
-4


Typical 12 hour coverage

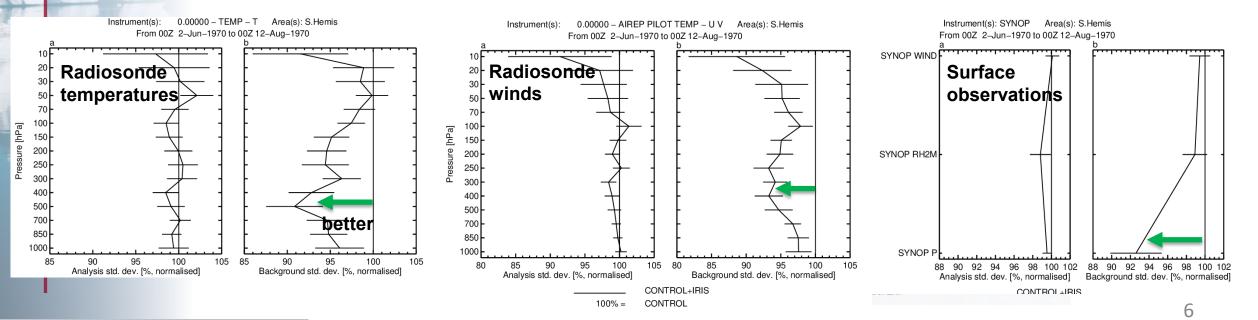
- Operated on Nimbus-4, from April 1970 January 1971
- Nadir only observations. Spectral range 400 1600 cm⁻¹
- Resolution: 2.53 cm⁻¹ to 2.69 cm⁻¹
- 94 km footprint
- 13 s measurement time
- Coverage to 80°N to 80°S (rely on **B** to propagate information to poles)

Daily time coverage / %

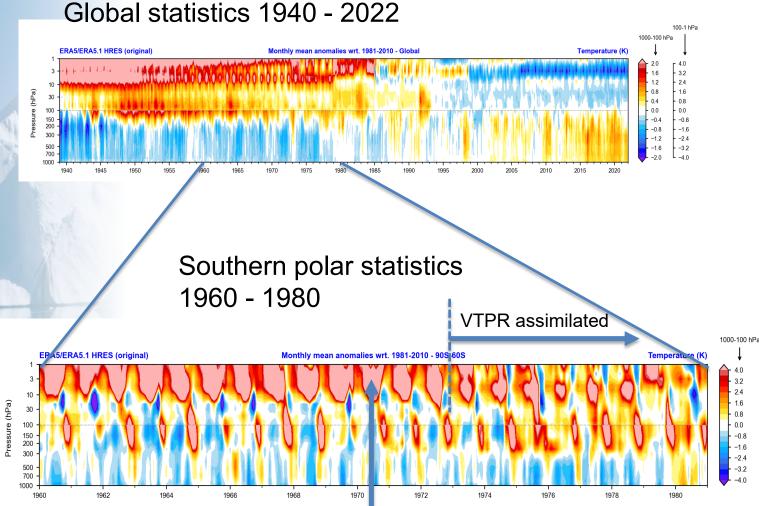
	Year	Month	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
	1970	04									18	63	0	0	2	95	88	77	86	2	79	93	88	85	85	5	83	0	1	86	79	76	
		05	82	3	85	5	92	79	85	85	93	93	93	93	79	52	84	93	93	5	93	86	81	0	92	86	93	90	90	82	79	5	88
		06	90	0	90	77	59	59	71	70	86	63	77	79	93	93	91	93	6	90	0	3	93	93	93	93	5	93	91	0	91	93	
		07	93	1	90	93	93	85	85	5	0	89	89	68	92	73	4	76	94	3	0	0	4	86	5	94	94	79	79	1	0	0	89
		08	85	79	88	1	0	76	9	91	85	86	82	90	86	94	80	0	55	5	94	2	59	2	79	80	86	5	0	0	2	82	47
		09	86	88	2	88	95	80	95	86	95	2	0	91	89	80	94	5	75	0	47	36	3	0	0	0	96	94	88	89	93	94	
		10	2	85	61	63	58	85	95	86	6	0	0	0	4	21	93	80	5	89	1	90	63	3	88	94	88	4	4	85	78	0	0
		11	93	91	91	85	0	0	60	86	83	0	93	81	93	97	1	91	92	94	89	93	<mark>98</mark>	93	82	54	2	96	93	69	82	81	
		12	71	70	<mark>68</mark>	1	69	77	76	0	77	0	1	63	66	61	0	61	70	<mark>69</mark>	0	76	72	72	73	<mark>68</mark>	74	3	71	72	69	69	75
	1971	01	0	70	64	73	63	69	0	0	53	0	0	0	0	0	0	0	46	52	0	36	42	46	0	35	44	46	0	40	40	48	


IRIS initial IFS tests

- TCO399 (25km resolution), L137, weak constraint 4DVAr
- CO₂ temperature sounding channels actively assimilated (60 channels ~ 624 - 706 cm⁻¹)
- Adjacent channels used no spectral thinning & no spatial thinning
- Diagonal errors: R = 1.0K
- VarBC on. Offset and 4 thickness predictors (10-1, 50-5, 200-50, 1000-300 hPa)
- *McNally & Watts* cloud detection, parameters as given in *Poli & Brunel (2016)*
- IRIS RTTOV coefficients include the effects of:
 - spectral shift due to off-axis effects
 - OPD_{MAX}
 - self apodisation due to finite FOV
 - Hamming numerical apodisation
 - but no additional 'misalignment-induced' apodisation



Assimilating Nimbus-4 IRIS data: forecast Impacts



- Control: CY48R1 / Experiment assimilated IRIS data
- Background error covariances from ERA5 (so appropriate for 1970)
- 12Z 1st June 1970 00Z 12th August 1970
- Significant improvements in southern hemisphere and stratosphere
- Improved background (and analysis) fits to radiosonde temperatures and winds (~5%) and surface pressure obs (7%)

Upper stratospheric biases in ERA5: Temperature anomalies relative to ERA5 climate

IRIS experiments

Generally, ERA5 temperature ٠ analyses above 10 hPa exhibit biases and discontinuities

Particularly large biases evident in southern polar winter (>> 6K in the plot shown)

100-1 hPa

3.6

2.4

1.2

0.0

-1.2

-2.4

-3.6

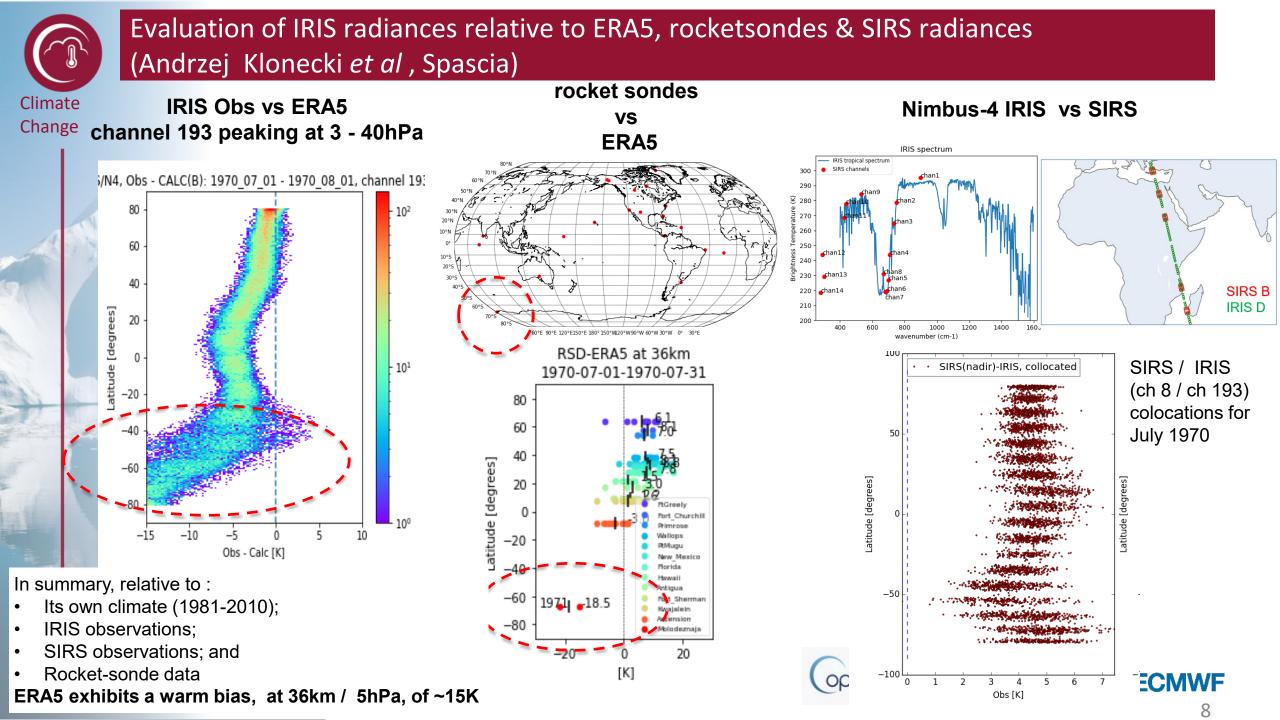
-4.8 -6.0

3.2 2.4

1.6

0.8

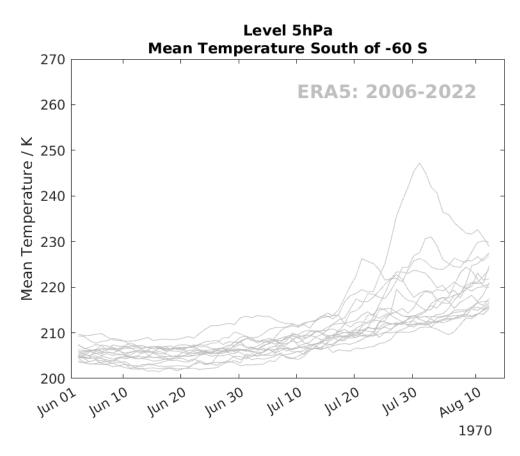
0.0


-0.8 -1.6

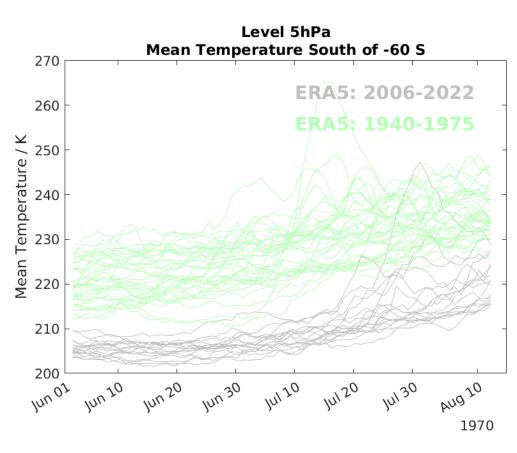
-2.4

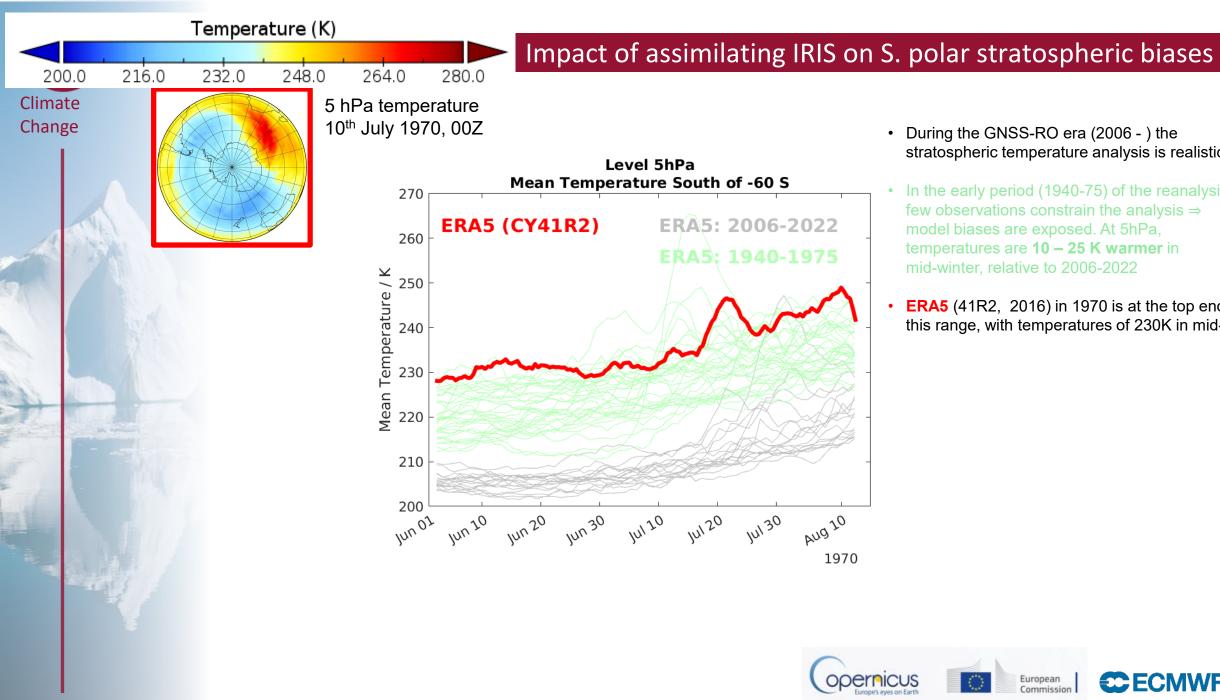
-3.2 -4.0

- Repeatable from year-to-year (before 1972)
- Reduced following the assimilation of VTPR data (Nov 1972 - Jan 1979)



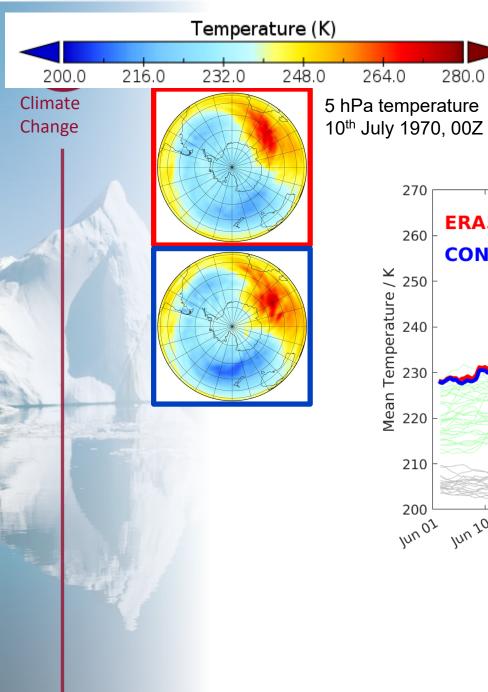
Climate Change

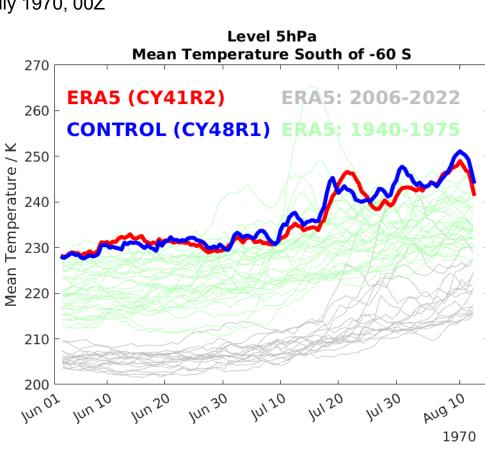

• During the GNSS-RO era (2006 -) the stratospheric temperature analysis is realistic


Impact of assimilating IRIS on southern polar stratospheric biases

- During the GNSS-RO era (2006) the stratospheric temperature analysis is realistic
- In the early period (1940-75) of the reanalysis, few observations constrain the analysis ⇒ model biases are exposed. At 5hPa, temperatures are 10 – 25 K warmer in mid-winter, relative to 2006-2022

During the GNSS-RO era (2006 -) the • stratospheric temperature analysis is realistic In the early period (1940-75) of the reanalysis, few observations constrain the analysis \Rightarrow ERA5: 2006-2022 model biases are exposed. At 5hPa, temperatures are 10 - 25 K warmer in ERA5: 1940-1975 mid-winter, relative to 2006-2022

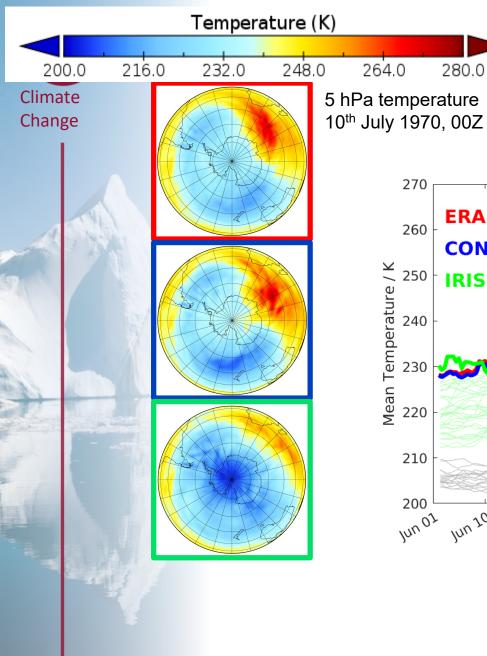

14130

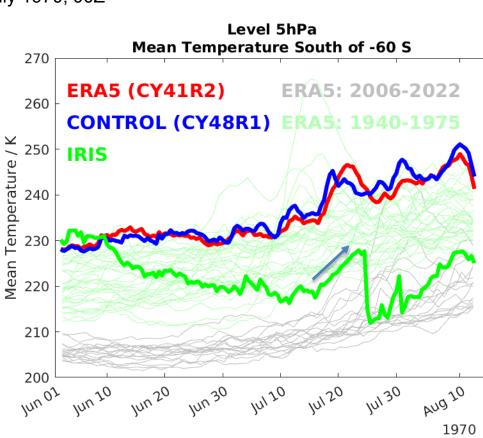

AU9 10

1970

ERA5 (41R2, 2016) in 1970 is at the top end of this range, with temperatures of 230K in mid-winter

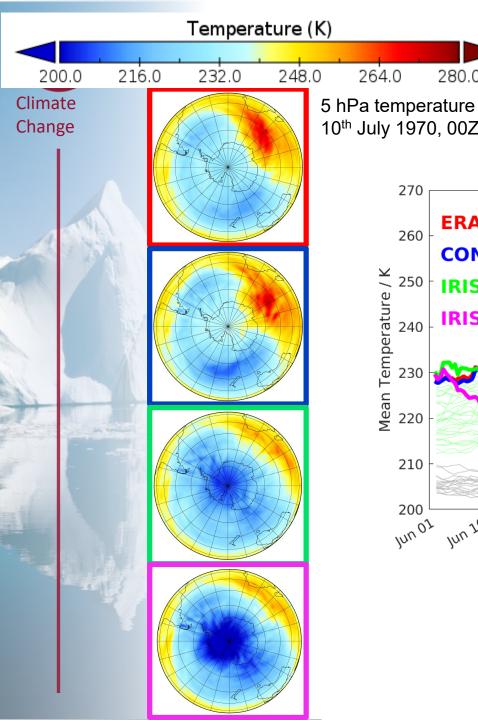
opernicus European **ECMWF** Commission

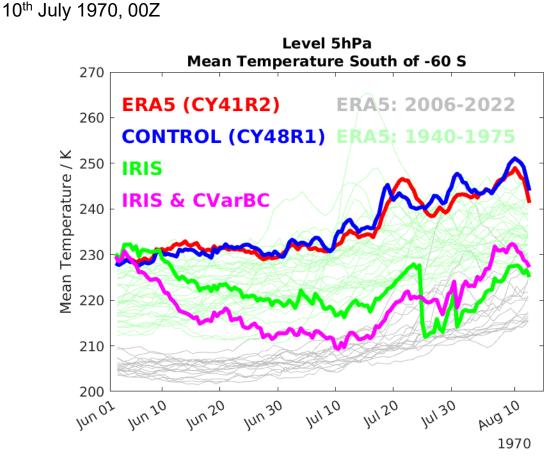

280.0


During the GNSS-RO era (2006 -) the • stratospheric temperature analysis is realistic

Impact of assimilating IRIS on S. polar stratospheric biases

- In the early period (1940-75) of the reanalysis, few observations constrain the analysis \Rightarrow model biases are exposed. At 5hPa, temperatures are 10 – 25 K warmer in mid-winter, relative to 2006-2022
- ERA5 (41R2, 2016) in 1970 is at the top end of this range, with temperatures of 230K in mid-winter
- The CONTROL (48R1, 2022) exhibits the same warm bias


280.0


During the GNSS-RO era (2006 -) the stratospheric temperature analysis is realistic

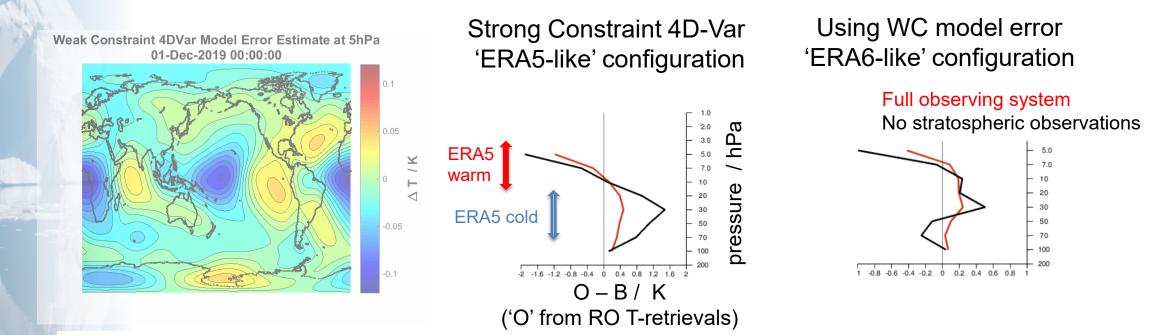
Impact of assimilating IRIS on S. polar stratospheric biases

- In the early period (1940-75) of the reanalysis, few observations constrain the analysis \Rightarrow model biases are exposed. At 5hPa, temperatures are 10 – 25 K warmer in mid-winter, relative to 2006-2022
- ERA5 (41R2, 2016) in 1970 is at the top end of this range, with temperatures of 230K in mid-winter
- The CONTROL (48R1, 2022) exhibits the same warm bias
- Assimilating IRIS gradually brings temperatures to more realistic values. Note: increase (*I*) from 16th-24th July is associated with an outage of IRIS observations

280.0

During the GNSS-RO era (2006 -) the stratospheric temperature analysis is realistic

Impact of assimilating IRIS on S. polar stratospheric biases


- In the early period (1940-75) of the reanalysis, few observations constrain the analysis \Rightarrow model biases are exposed. At 5hPa, temperatures are 10 – 25 K warmer in mid-winter, relative to 2006-2022
- ERA5 (41R2, 2016) in 1970 is at the top end of this range, with temperatures of 230K in mid-winter
- The **CONTROL** (48R1, 2022) exhibits the same warm bias
- **Assimilating IRIS** gradually brings temperatures to more realistic values. Note: increase (*J*) from 16th-24th July is associated with an outage of IRIS observations
- Using Constrained VarBC (Han & Bormann) reduces the bias absorbed by VarBC, and accelerates cooling of the analysis towards more realistic values.

Treatment of stratospheric biases using Weak Constraint 4D-Var

- Weak constraint 4D-Var analyses large scale biases in the stratosphere, operational since 2020
- Effective in reducing temperature biases in the stratosphere
- Several options under test for ERA6 (e.g. WC 2006 \rightarrow present, WC model error used before 2006)

- → amplitude of T biases reduced by a factor of 2-3 in the stratosphere when using WC 4D-Var model error forcing (MEF)
- \rightarrow remains to be seen how well WC MEF will work in the early period of the reanalysis. IRIS observations will be key in assessing this.

Summary

Change

- Preparations for ERA6 include the evaluation of many reprocessed (EUMETSAT) & rescued satellite radiance datasets (EUMETSAT and Spascia). See:
 - Jon Mittaz's talk (5.02) on Investigating possible sources of error in the calibration of the Microwave Sounding Instrument &
 - Timo Hanschmann's talk (5.03) on *Applying inter-satellite Harmonisation* to various Microwave Humidity Sounders
- The example of Nimbus-4 IRIS shows: ٠
 - This very early (36 years before IASI ! & only 13 years after Sputnik !) hyperspectral sounding data is of high quality & bears testament to the skill of the scientists and engineers who built, launched & operated this instrument & took care of the data over the last 53 years !
 - The assimilation of this data provides significant benefit on analyses & forecast quality in the SH, but perhaps the most significant benefit is
 - Validating the general treatment of model biases (e.g. using WC-4DVar MEF) with unique observational data ٠ in ERA6 and future reanalyses

