

How well the new generation of Chinese IR hyperspectral sounders compare with IASI?

B. Theodore, P. Dussarrat, G. Deschamps, D. Coppens

ITSC-24, Tromsoe, 16 March 2023

FY4A/B-GIIRS Properties

http://fy4.nsmc.org.cn/nsmc/en/instrument/GIIRS.html

	FY-4A (R&D)				FY-4B (Operational)			
Spectral parameters (normal mode)		Range (cm ⁻ ¹)	Resolution	No. channels		Range (cm⁻ ¹)	Resolution	No. channels
	LWIR	700~1130	0.8	538	LWIR	700~1130	0.625	688
	S/MIR	1650~2250	1.6	375	S/MIR	1650~2250	1.2	500
	VIS	0.55-0.75µm		1	VIS	0.55-0.75µm		1
Spatial Resolution	L/S/MWIR		16km		L/S/MWIR		8km	
	VIS		2km					
Area	China		$5000 \times 5000 \text{ km}^2$		China		$5000 \times 5000 \text{ km}^2$	
	Mesoscale		1000 × 1000 km ²		Mesoscale		1000 × 1000 km ²	
Temporal resolution	China		<1 hour		China		<1 hour	
	Mesoscale		<1/2 hour		Mesoscale		<1/2 hour	
Sensitivity (mW/m²sr⋅cm⁻¹)	LWIR		0.5~1.1		LWIR		0.3	
	S/MIR		0.1~0.14		S/MIR		0.06	
	VIS		S/N>200(p=100%)		VIS		S/N>200 (p=100%)	
Calibration accuracy (radiation)	1.5k (3ơ)			1.0k (3ơ)				
Calibration accuracy (spectrum)	10 ppm (3σ)			5 ppm (3σ)				
Quantization (bits)	13				13			

https://img.nsmc.org.cn/PORTAL/NSMC/DOC/CONFERENCE/AOMSU C/AOMSUC11/POSTER/2-3-NI.pdf

	FY-4A/GIIRS	FY-4B/GIIRS
Spectral Range	LWIR:700cm ⁻¹ -1130cm ⁻¹	LWIR:680cm-1-1130cm-1
	S/MIR:1650cm ⁻¹ -2250cm ⁻¹	S/MIR:1650cm ⁻¹ -2250cm ⁻¹
Spectral resolution	0.625cm ⁻¹	0.625cm ⁻¹
Temporal	35min (1000*1000)	45min (5000*5000)
Resolution	67min (5000*5000)	
Sensitivity(mW/	LWIR:0.5-1.1	LWIR:≤0.5
m ² sr cm ⁻¹)	S/MIR:0.1-0.14	S/MIR:≤0.1
	S/N≥200 (ρ=100%)	S/N≥200 (ρ=100%)
Calibration	1.5K	0.7K
accuracy		
(radiation)		
Calibration	10ppm	<10ppm
accuracy		
(spectrum)		
Spatial	L/S/MIR:16km	L/S/MIR:12km
Resolution	VIS:2km	VIS:1km

Detector Matrix

Pixel matrix and co-registration (using NADIR dwell and product lat/long):

https://img.nsmc.org.cn/PORTAL/NSMC/DOC/CONFERENCE/AOMSUC/AOMSUC11/POSTER/2-3-NI.pdf

• GIIRS-B detector array more regular, pixels gap on purpose ?

www.eumetsat.int

0.5

Platform SSP: GIIRS-A: 104.7E GIIRS-B:133E

12 full scans of north Asia per day made of: GIIRS-A: 7x59 stares GIIRS-B: 12x27 stares

GliRS scan

- Number of dwells per 15min ("Observing Beginning Time" product):
 - Dips in data because of calibration views every two hours?
 - Star detection for navigation: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8629974

• No measurements at around 17:00 UTC for FY4A and at 14:30 UTC for FY4B, exactly when the platforms face the sun ! Probably to avoid sun-straylight...

FY4A/B-GIIRS vs. IASI collocations

Colocation parameters:

- 12/12-15/1: ~1 month
- Colocations criteria:
 - $\Delta t = 1000 s$
 - $\Delta d = 10$ km (GIIRS-A/B pixel = 16/12km)
 - $\Delta \theta$ = 10degrees (zenith)
- GIIRS-A vs. IASI = 39489 colocations
- GIIRS-B vs. IASI = 29829 colocations

FY4A/B-GIIRS vs. IASI Radiometric Calibration

- Re-apodisation of IASI and GIIRS-A (not apodised) to match GIIRS-B Hamming apodisation and sampling (= $62.5m^{-1}$)
- Radiometric calibration evaluation as function of the scene temperature

Warm scenes are measured too cold and cold scenes too warm -> probably an indication of infield straylight

• GIIRS-B is significantly better: no more contaminations, less scene-dependency !

FY4A/B-GIIRS vs. IASI Spectral Calibration

• Spectral scale factors are computed using IASI as reference

 Spectral calibration satisfies the requirement of 10 ppm for both GIIRS. It is however better for GIIRS-B with much less dispersion and a better time-stability

PC Decomposition

Principal Component Analysis (PCA) can help highlighting some instrumental defects/characteristics

- <u>IASI</u>:
 - Band 2: PC#24 = snake skin:
 - Associated to vibrations.

Band 2, PC score 24, Pixel 1 (20110202 12-24)

^{-8211.320 -6386.580 -4561.840 -2737.110 -912.369 912.369 2737.110 4561.850 6386.580 8211.320}

FY4B GIIRS PCA

- <u>FY4B-GIIRS</u>:
 - LWIR: PC#12 = checkerboard:
 - MWIR: PC#8 = diamond:
 - Both associated with spectral calibration issues.

11

FY4A/B-GIIRS Limb views

- Analysis of Earth limb (averaged on ~3 days) data looking for straylight
- Enhanced contrast to trace residual signal in space:

- Definitive improvement ! But GIIRS-B residual straylight is still clearly visible ~1% !
 - LWIR: In-field symmetric ghosts ! / MWIR: Out-of-field Earth straylight !

EUM/RSP/VWG/23/1353589, v1 Draft, 6 March 2023

FY4B-GIIRS LWIR straylight

- Simulation of GIIRS LWIR in-field straylight: slightly un-focused symmetrical ghosts = camera flares ?
 - Hypothesis of ~3.5% ghosts

Flare examples:

Flare simulations

SAF retrieval

www.eumetsat.int

• FY4A-GIIRS SAF retrieval (all detector included):

• Straylight effects....?

• FY4B-GIIRS SAF retrieval (all detector included):

• MWIR wrong apodisation ? Straylight effects.... Over-correction TBC

SAF retrieval

- FY3-D/E : LEO
- 4 Pixels x 29 scan angles \cong IASI

Band	Spectral range (cm-1)	Resolution (cm-1)	NE∆T @250K	chs
Longwave	650 *– 1136 (15.38 μm-8.8 μm)	0.625	0.15K	778
Midwave1	1210 – 1750 (8.26μm-5.71 μm)	1.25	0.1K	433
Midwave2	2155-2550 (4.64μm-3.92 μm)	2.5	0.3K	159

- Specifications :
- Direct flux available @ EUMETSAT since 2020 (FY-3E) and 2023 (FY-3E)

HIRAS vs. IASI

Colocations parameters : $< (7.5km)^2 < 300s$ only at the poles with additional parameters (optional) : zenith, azimuth, scene types (cloudy, sea ..), long/lat

- Around 300 hundred colocations are found during one day every two weeks with all three IASI.
- NB : There is a geo-localisation difference between MWIR and LWIR (20-60km)!

EUM/RSP/VWG/23/1353589, v1 Draft, 6 March 2023

240

Suspicions toward an etalon effect (stray light) occurring in LWIR band, coating issue creating a ~10µm cavity

www.eumetsat.int

HIRAS IASI

- GIIRS-B shows a definitive improvement wrt. GIIRS-A !
- Some instrumental effects could be as stake (mis-alignment, defocus, ringing, etalon, ZPD shift ...), very interesting in the perspective of IRS (and IASI-NG)
- GIIRS-B is close to operational quality: assessment on going @ ECMWF, please see Chris Burrows'poster
- More work needed on HIRAS whose data seems very promising

www.eumetsat.int

Thank you! Questions are welcome.

FY4B-GIIRS scan

• ~2h full scan of GIIRS-B over Asia/China = ~320 times 16x8 soundings:

 MTG-S IRS will perform ~560 times 160x160 soundings in 2 hours, 350 times denser than FY4B-GIIRS !

FY4B GIIRS PCA

- <u>FY4B-GIIRS</u>:
 - LWIR: PC#12 = checkerboard:

FY4B GIIRS LWIR

- MWIR: PC#8 = diamond:
- Both associated with spectral calibration issues.

PC#1 PC#2 PC#3 PC#4 PC#5 PC#1 PC#2 PC#3 PC#4 PC#5 PC#6 PC#7 PC#8 PC#9 PC#10 PC#6 PC#7 PC#8 PC#9 PC#10 PC#11 PC#12 PC#13 PC#14 PC#15 PC#11 PC#12 PC#13 PC#14 PC#15 PC#16 PC#20 PC#17 PC#19 PC#18 PC#16 PC#17 PC#18 PC#19 PC#20

FY4B GIIRS MWIR