

Effects of inhomogeneities within the Field of View in satellite Water Vapour measurements

Xavier Calbet, AEMET (xcalbeta@aemet.es) C. Carbajal-Henken, B. Sun, T. Reale, S. DeSouza-Machado

24 June 2021 ITSC-23

- 1. Theoretical Background
- 2. Plan
- 3. Structure Function
- 4. Test Case
- 5. Outlook

Summary

1. Theoretical Background

- 2. Plan
- **3.** Structure Function
- 4. Test Case
- 5. Outlook

Variability of Water Vapour

Two different scales

GOBIERNO

MINISTERIO

PARA LA TRANSICIÓN ECOLÓGICA

Agencia Estatal de Mete

Simulation

Variability of Water Vapour within FOV

Variability of Water Vapour within FOV

RTM in an inhomogeneous FOV

• Finally, if we take the effects of all the vertical profile levels, we get the equation from the following slide

RTM in an inhomogeneous FOV

RTM calculation for an inhomogeneous FOV, where:

- < > means spatial average
- R are radiances
- w is humidity
- i, j are the vertical level indices

$$<\delta R>\approx \sum_{i=1}^{All\,Levs}\frac{dR}{dw_i}<\delta w_i>+\sum_{i=1}^{All\,Levs}\sum_{j=1}^{All\,Levs}\frac{1}{2}\frac{d^2R}{dw_idw_j}<\delta w_i\delta w_j>$$

Effect of FOV inhomogeneity

MHS and IASI Jacobians (solid lines) and 2nd Derivatives (dashed lines) MHS IASI

Effect of FOV inhomogeneity

Tentative results for MW

Calbet et al. 2018, AMT

Summary

- 1. Theoretical Background
- 2. Plan
- **3.** Structure Function
- 4. Test Case
- 5. Outlook

How to Test or use Operationally

- We need to have a model for the small scale WV variability \rightarrow Structure Function
- We need to **test** it in some cases to see if the WV inhmogeneity is really **significant**

Ongoing Work and Future Plan

Complementary Instrument	Structure Function	RTM testing
Sequential Sondes	YES	YES
MSG	YES	NO
GOES	Ongoing	NO
OLCI	YES	NO
LIDAR	NO (long term)	NO (long term)

Summary

- 1. Theoretical Background
- 2. Plan
- 3. Structure Function
- 4. Test Case
- 5. Outlook

Structure Function of WV from Sondes, MSG and OLCI

Structure function confirmed!! Useful concept for practical purposes

Summary

- 1. Theoretical Background
- 2. Plan
- **3.** Structure Function
- 4. Test Case
- 5. Outlook

Test Case

- One well known case from the EPS/MetOp Campaign (from 2007 described in Calbet et al. 2011, AMT)
- Sequential Sondes with:
 - One CFH + RS92 sonde flown 1 hour before overpass time
 - One RS92 sonde flown 5 minutes before overpass time
- Allowing WV bias correction by comparing CFH versus RS92
- Estimation of the Best State of the Atmosphere (Tobin interpolation)
- In this presentation only IR will be shown. Similar results should be obtained for MW

Test Case: Sonde profile

RTTOV IASI Radiances from Best State Estimate

19

WV Variability Matrix

Measured from Sequential Sonde data - Not Robust!

Agencia Estatal de Meteorolo

IASI Radiances with and without WV Inhomogeneities

IASI Radiances with and without WV Inhomogeneities

IASI Radiances with and without WV Inhomogeneities

Comparison in Brightness Temperature Space → Improvement of around 0.5K

1INISTERIO 'ARA LA TRANSICIÓN ECOLÓGICA

MHS Radiances with and without WV Inhomogeneities

Comparison in Brightness Temperature Space → Improvement of around 0.5K

Summary

- 1. Theoretical Background
- 2. Plan
- **3.** Structure Function
- 4. Test Case
- 5. Outlook

Outlook

- Inhomogeneity is significant: Relatively stable profile has an 0.5K effect in radiances (IASI and MHS) \rightarrow Other more turbulent profiles might have a higher effect
- Retrievals: Direct retrievals with IR only will be challenging. See likely underestimation in extra slides
- Extensive testing: This will most likely need a multi-team coordinated effort
 - Can be tested with other, larger sonde data
 - ➤ To test and operationally use this on a global scale, satellite data needs to be used → Other satellite instruments need to be exploited to retrieve inhomogeneity
- Microturbulence: Only "macroturbulence" has been tested, possible "microturbulence" effect affecting line shapes

Extra Slide: dR/dw versus d²R/dw²

In the WV band, dR/dw is almost linear with $d^2R/dw^2 \rightarrow$ Difficult to retrieve both WV profile and WV inhomogeneity

 $dB/dR \sim -0.5 d^2R/dw^2$ Turbulence can be mistaken with WV concentration!!

IASI separating inhmogeneity from WV content

- Retrievals without turbulence, <dw'>:
 <dR> = dR/dw <dw'>
- Retrievals with turbulence, <dw>:

• Equating both results: $<dw> \sim <dw'> + 0.25*<dw^2> \rightarrow <dw>$ greater than <dw'>

WV concentration is perhaps underestimated!!

Consistent with Carbajal-Henken, 2020, Remote Sensing

