

Norwegian Meteorological Institute

Impact of satellite data in an arctic regional reanalysis system

Per Dahlgren

ITSC Tromsø March 2023

Outline

Context & objectives

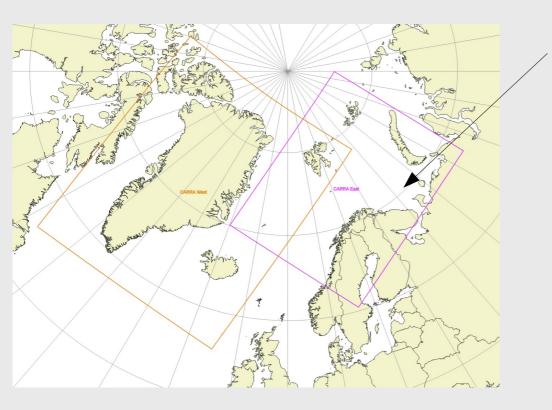
- The CARRA regional reanalysis system
- Overview of experiments
- Observation impact on analysis (DFS)
- Observation impact on forecast (MTEN)
- Forecast verification statistics
- Summary

The Copernicus Arctic Regional Reanalysis (CARRA) system

Implemented by ECMWF as part of The Copernicus Programme

opernicus

Climate

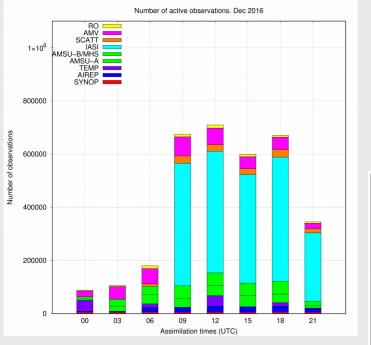

Change Service

- A Copernicus C3S service
- CARRA system built from Norwegian (MET) and Danish (DMI) operational HARMONIE-AROME systems
- 2 domains, reanalysis: 1991near real time
- 3D-Var, full observing system assimilated:

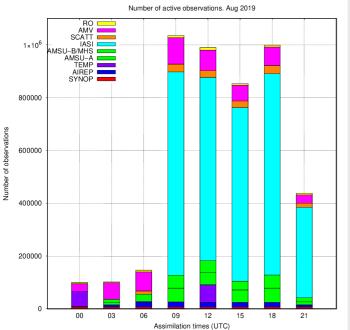
AMSU/MHS, IASI, AMV, Scatt, GNSS-RO

- 3 hour cycling
- +30h forecast at 00 and 12UTC
- Lateral boundaries: ERA5 Norwegian Meteorological Institute

Observation Impact Experiments


- East domain used
- Two periods
 - December 2016
 - August 2019
- Reference: Full observing system
- In the experiments we take out: AMSU/MHS

IASI


 All runs start using 1:st guess and VARBC from the CARRA reanalysis

December 2016

Observation Usage

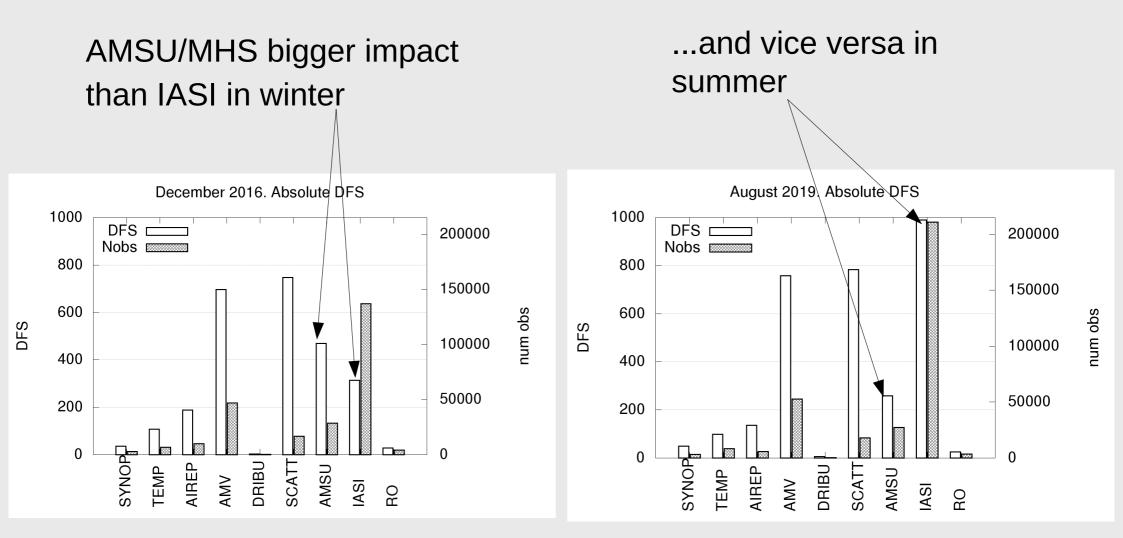
August 2019

Instrument	Satellites,	Satellites, August
	December 2016	2019
ATOVS AMSU-A	NOAA-15,18,19	NOAA-15,18,19
	METOP-1,2	METOP-1,2,3
ATOVS AMSU-B	NOAA-18	
ATOVS MHS	NOAA-19 METOP-1,2	NOAA-19
		METOP-1,2,3
IASI	METOP-1,2	METOP-1,2
SCATT	METOP-1,2	METOP-1,2,3
AMV	NOAA-15,18,19 NPP	NOAA-15,18,19 NPP
	AQUA METOP-2	AQUA METOP-1,2
		Dual-METOP
RO	METOP-1,2	METOP-1,2,3
	GRACE-A	
	COSMIC-1,6	

Observation impact on the analyzed atmospheric state

Methodology: Degrees of Freedom of Signal (DFS)

- 1: Perform 3D-Var analysis
- 2: Perturb all observations and do a second analysis
- 3: Compare difference between analyses:


$$DFS = \sum_{i} \frac{\partial H_i(\boldsymbol{x}_a)}{\partial \boldsymbol{y}_i} \approx (\boldsymbol{y}^* - \boldsymbol{y})^T \boldsymbol{R}^{-1} (H(\boldsymbol{x}_a^*) - H(\boldsymbol{x}_a))$$

Chapnik, 2006 Q. J. R. Meteorol. Soc

- Calculate DFS for all cycles in two separate days
- Average results

Observation impact on the analyzed atmospheric state

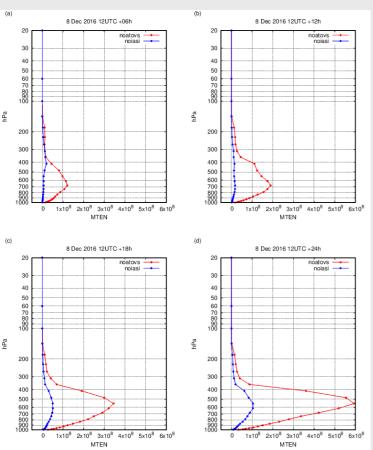
 Radiances, and other satellite based observations, all have big influence on the analyzed atmospheric state

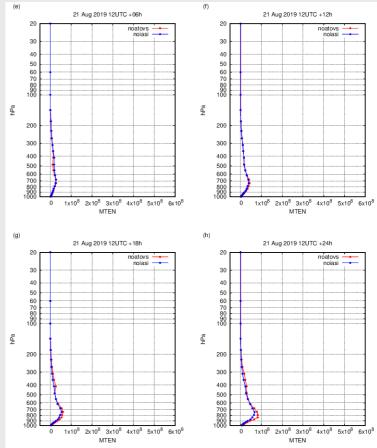
Observation impact on forecast

Propagation of Information

- Methodology: Moist Total Energy Norm (MTEN)
 - 1: Perform analysis and forecast
 - 2: Withdraw one observation type
 - 3: Redo analysis and forecast
 - 4: Compare difference between forecasts

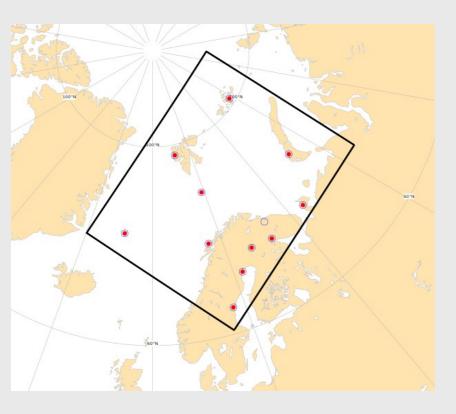
$$MTEN = \int_{D} \left[u'^2 + v'^2 + \frac{c_p}{T_r} T'^2 + RT_r \left(\frac{p'_s}{p_r}\right)^2 + \frac{L^2}{c_p T_r} q'^2 \right] dD$$


Ehrendorfer, 1999 J. Atmos. Sci.


Storto,, 2010 Atmos. Sci. Lett.

- Here the integral is per level, i.e. a profile is obtained
- **OBS!!** Only one case per study period

Observation impact on forecast Propagation of Information


- Stronger MTEN response in winter than in summer
- AMSU/MHS (red) bigger impact than IASI in winter
- AMSU/MHS and IASI comparable in summer
- MTEN value dominated by wind (in these cases):
 - Dec case involved a strong cyclonic vortex

Impact on forecast verification statistics


TEMP stations used for verification Blue rings: Dec 2016 Red dots: Aug 2019

- Upper-air forecasts are verified against radiosonde observations
- Only forecast ranges +12h and +24h are verified (not the analysis)
- Significance test computed on normalized RMSE differences
- Impact generally quite small
 - Robust system; REF assimilates full observing system

Impact on forecast verification statistics

December 2016

Summary

- Radiances, and other satellite based observations, have big impact on the analyzed atmospheric state
- The increments from radiances propagates forward in time via forecast model integration.
 - How much is situation dependent
- MW and IR radiances improves low level humidity;
 - in line with other studies
 - IR did not improve humidity in winter, see bullet below
- We have identified some issues regarding AMSU-A and IASI that are under investigation