

U.S. AIR FORCE

JCSDA Next Generation Earth System DA

Tom Auligné and team, Joint Center for Satellite Data Assimilation

What is JEDI?

International TOVS Working Group:: Mar 21, 2023:: Troms 🐼, Norway.

Joint Effort for Data assimilation Integration (JEDI)

Consortium of *Jointness:* share as much as possible without imposing a single approach

U.S. AIR FORCE

Joint Effort for Data assimilation Integration (JEDI)

Consortium of *Jointness: s*hare as much as possible without imposing a single approach

Goals

- Next-generation unified DA for Earth system science
- Increase R2O/O2R transition rate
- Improve science productivity and code performance

Collaborative working practices

- 😴 🚸 🍞 🔁 🕏 🚎 🛛 Open-source code management
 - 🏚 💒 🥵 🛛 Agile project methodology
 - Or CI/CD using containers & cloud

Modern software principles

- Separation of concerns
- Generic programing

$\Delta x_a = \mathbf{B}\mathbf{M}^{\mathsf{T}}\mathbf{H}^{\mathsf{T}} (\mathbf{H}\mathbf{M}\mathbf{B}\mathbf{M}^{\mathsf{T}}\mathbf{H}^{\mathsf{T}} + \mathbf{R})^{-1} (y_o - H(M(x_b)))$

JEDI is designed to separate as cleanly as possible the concepts of:

- data assimilation algorithms
- estimated system's specifics
- observations specifics

Most (Gaussian) DA algorithms can be written using concepts of x, y, H, M, B, R, without knowing what grid x is distributed on, how many different observed variables ymay contain, and whether M is an atmospheric, a sea ice, or a multi-component coupled model.

The key of this design is the "abstract interfaces" that are used by DA algorithms and implemented by specific models and specific observations.

DA algorithms implemented:

- 3DVar, 3DVar-FGAT, 4DEnVar, strong & weak-constraint 4DVar, dual-space, ...
- EDA (with any Var from above), block-Lanczos EDA
- LETKF, LGETKF (model-space vertical localization)
- Particle flow filter

MODEL	ТҮРЕ	CENTER
UFS	Global Atmosphere	NOAA
GEOS	Global Atmosphere	NASA
NEPTUNE	Global atmosphere	Navy
MPAS	Global atmosphere	NCAR
LFRic	Global atmosphere	Met Office
Unified Model	Global atmosphere	Met Office
UFS CAM	Regional atmosphere	NOAA
MPAS-Regional	Regional atmosphere	NCAR
WRF	Regional atmosphere	NCAR
UFS GSDChem	Global constituents	NOAA
GEOS-AERO	Global aerosols	NASA
UFS CAM- CMAQ	Regional air quality	NOAA
MOM6	Global ocean	NOAA
ROMS	Regional ocean	NOAA
SIS2	Sea-ice	NOAA
CICE6	Sea-ice	NOAA
WW-III	Wave	NOAA
NOAH-MP	Land and Snow	NOAA
QG	Toy model	ECMWF
Lorenz 95	Toy model	ECMWF
Shallow Water	Toy model	NOAA

SATELLITE DA

Some examples of obs operators:

- CRTM, RTTOV satellite radiances
- Scatterometer neutral wind
- Multiple operators for GNSSRO refractivity and bending angle
- Ground based GNSS
- Conventional atmospheric obs
- Corrected surface pressure
- Total column water vapor
- Conventional ocean obs
- Cool skin temperature
- Absolute dynamic topography
- Sea ice fraction and thickness
- Aerosol optical depth
- In situ particulate matter
- Radar reflectivity and radial velocity

Forward Operators (Traditional Approach)

Duplication of effort

Unified Forward Operator (UFO)

The App Store of observation operators!!

UFO - Generic QC Filters (No Coding!)

JEDI - A New Dawn (for Earth System DA)

JEDI - A New Dawn (for Earth System DA)

JEDI - The Multiplier Force

ufo

crtm

saber

OODS

ioda

specific

solo

r2d2

Scientific diversity without reinventing the wheel

JEDI = unified DA system with multiple configurations

How to Learn more about JEDI?

Next JCSDA Science Workshop: May 16-18, 2023 in Boulder, CO (+virtual)

Training

Online tutorials (www.jcsda.org) 7 JEDI Academies (week-long) 500+ padawans (35 universities + 11 private + 9 international)

Public Releases

2021-6-11JEDI-FV3 v12021-9-24JEDI-MPAS v12021-11-4JEDI-SOCA v12022-07-18JEDI-SKYLAB v12022-10-11JEDI-SKYLAB v22023-01-09JEDI-SKYLAB v3

JEDI Academies

How to Learn more about JEDI?

Next JCSDA Science Workshop: May 16-18, 2023 in Boulder, CO (+virtual)

Training

Online tutorials (www.jcsda.org) 7 JEDI Academies (week-long) 500+ padawans (35 universities + 11 private + 9 international)

Public Releases

2021-6-11 JEDI-FV3 v1 2021-9-24 JEDI-MPAS v1 2021-11-4 JEDI-SOCA v1 2022-07-18 JEDI-SKYLAB v1 2022-10-11 JEDI-SKYLAB v2 2023-01-09 JEDI-SKYLAB v3

How to contribute

- Discuss planned contributions ahead of time (inclusive)
- Effort is oriented toward optimal genericity (reusable)
- You may not be the sole owner of design/code (collaborative)
- Basic object-oriented training may be needed (modular)
- Developers need to also write tests and documentation (CI/CD)
- You may need to keep up with quickly evolving system (agile)

Questions

