

Quantification of inhomogenous water vapor concentration effects in IR and MW radiation biases comparing observed versus calculated radiances (sondes + RTTOV) Xavier Calbet, AEMET (xcalbeta@aemet.es) Bomin Sun, Tony Reale, Lori Borg

20 March 2023 ITSC-24 Background: Sonde versus Sounders
 Ongoing: Sonde versus Sounders
 Theoretical Background
 Previous results: small sample IR
 Results: Big sample MW
 Conclusion and Outlook

- 1.Background: Sonde versus Sounders
- 2.Ongoing: Sonde versus Sounders
- **3.**Theoretical Background
- 4. Previous results: small sample IR
- 5. Results: Big sample MW
- 6. Conclusion and Outlook

Background: Sonde versus Sounders

- Matching Sonde RTM with IR Hyper •
 - Small Samples: Calbet et al. (AMT 2011,2016,2017)

Big Samples: Sun et al. (Rem. Sen. 2021)

Background: Sonde versus Sounders

- Including WV Inhomogeneities in matching Sonde RTM with Sounders
 - MW Theoretical: Calbet et al. (AMT 2018)

 IR Hyper Small Sample: Calbet et al. (ITSC-23 2021)

Background: Sonde versus Sounders
 Ongoing: Sonde versus Sounders
 Theoretical Background
 Previous results: small sample IR
 Results: Big sample MW
 Conclusion and Outlook

Ongoing: Sonde versus Sounders

- Extending to Big Samples MW: Including WV Inhomogeneities in matching Sonde RTM versus Sounders
 - > This presentation

- Refining study with Big Samples in IR and MW
 - Future

Background: Sonde versus Sounders
 Ongoing: Sonde versus Sounders
 Theoretical Background
 Previous results: small sample IR
 Results: Big sample MW
 Conclusion and Outlook

Variability of Water Vapour

Two different scales

Simulation

Reality

Variability of Water Vapour within FOV

Variability of Water Vapour within FOV

RTM in an inhomogeneous FOV

Gobierno

MINISTERIO PARA LA TRANSICIÓN ECOLÓGICA

Agencia Estatal

• Finally, if we take the effects of all the vertical profile levels, we get the equation from the following slide

RTM in an inhomogeneous FOV

RTM calculation for an inhomogeneous FOV, where:

- < > means spatial average
- R are radiances
- w is humidity
- i, j are the vertical level indices

$$<\delta R>\approx \sum_{i=1}^{All\,Levs}\frac{dR}{dw_i}<\delta w_i>+\sum_{i=1}^{All\,Levs}\sum_{j=1}^{All\,Levs}\frac{1}{2}\frac{d^2R}{dw_idw_j}<\delta w_i\delta w_j>$$

- Background: Sonde versus Sounders
 Ongoing: Sonde versus Sounders
 Theoretical Background
 Previous results: small sample IR
- 5. Results: Big sample MW
- 6. Conclusion and Outlook

Previous result (ITSC-23): small sample for IASI

Previous result (ITSC-23): small sample for IASI

Comparison in Brightness **Temperature** Space \rightarrow Improvement of around 0.5K

LA TRANSICIÓN ECOLÓGIC

TERIO

Background: Sonde versus Sounders
 Ongoing: Sonde versus Sounders
 Theoretical Background
 Previous results: small sample IR
 Results: Big sample MW
 Conclusion and Outlook

Results: Big sample MW

- Sonde sample from Metop campaign 2007 over Lindenberg: 134 sequential sondes
- Sequential sondes = two consecutive sondes launched 50 min and 5 min before satellite overpass time
- GRUAN processed sondes
- MW data from Metop MHS
- RTM from RTTOV 13
- Skin Temperature retrieved approximately from MHS Channel 2 only
- Simple precipitation screening: BT(89 GHz) – BT(157 GHz) < 5 K
- No further cloud processing
- Final sample size 119 sequential sondes

WV Variability matrix from Sequential Sondes

RTM in an inhomogeneous FOV

- RTM calculations done with RTTOV 13
- Base profile from time interpolation of sequential sondes
- First and second derivatives calculated numerically (34425 RTM calculations for each profile)
- Radiance modified with inhomogeneities corrections from second derivatives and WV variability matrices

$$<\delta R>\approx \sum_{i=1}^{All\,Levs}\frac{dR}{dw_i}<\delta w_i>+\sum_{i=1}^{All\,Levs}\sum_{j=1}^{All\,Levs}\frac{1}{2}\frac{d^2R}{dw_idw_j}<\delta w_i\delta w_j>$$

Agencia Estatal de Meteorolos

OBS – CALC MHS Biases

Background: Sonde versus Sounders
 Ongoing: Sonde versus Sounders
 Theoretical Background
 Previous results: small sample IR
 Results: Big sample MW
 Conclusion and Outlook

Conclusions and Outlook

Conclusions

- WV Inhomogeneity does push the MW radiances in the right direction
- WV Inhomogeneity does push the MW radiances the right amount
- WV Inhomogeneity does affect significantly the MW radiances <~ 4K
- Biases can be corrected using WV inhomogeneities
- But STDV becomes higher → Something not well modelled: Clouds??, Inaccurate WV Var matrices?? Microturbulence effects?? Spectroscopy??

Outlook

- Work will be extended to the IR (IASI)
- Work will be extended with RS41 sequential sonde data together with MW and IR instruments from NOAA
- Project to fit Sonde+RTM to IR+MW Observations individually within instrument noise
- Code in https://gitlab.aemet.es/xcalbeta/Sonde2RTM.git
- Questions, comments, contributions welcome!!

Backup Slides

28

Structure Function of WV from Sondes, MSG and OLCI

Calbet et al. 2022, AMT

Position of sondes at Satellite Overpass Time

