Exploring a microwave radiance footprint operator in regional data assimilation systems

Máté Mile, Stephanie Guedj, Roger Randriamampianina The Norwegian Meteorological Institute

Motivation

Radiance data assimilation in high-resolution limited-area models is challenging

1

Radiance data assimilation in high-resolution limited-area models is challenging

Radiance data assimilation in high-resolution limited-area models is challenging

Outline

Footprint operator in general

Data and models

The actual implemented radiance footprint operator

A case study

Statistics and forecast verification

Future plans and summary

Single observation

Model grid

Interpolation

Interpolation

Interpolation

Interpolation

Footprint operator

The idea of radiance footprint operator **is not new**, for example

Duffourg et al. (2010) infrared radiances for convective-scale DA

Kleespies (2009) aggregation of model surface quantities

In this talk, **microwave, cross-track scanning** sensors and footprint operator are examined in a clear-sky framework.

Averaging model quantities

Footprint operator

AMSU-A and **MHS** radiances

AMSU-A IFOV size **48-147 km** (nadir-edge) MHS IFOV size **16-53 km** (nadir-edge)

AMSU-A and **MHS** radiances

AMSU-A IFOV size **48-147 km** (nadir-edge) MHS IFOV size **16-53 km** (nadir-edge)

AROME-Arctic

HARMONIE-AROME core **2.5 km** horizontal resol. 3D-Var scheme CONV, AMV, SCATT, RAD

MetCoOp

HARMONIE-AROME core **2.5 km** horizontal resol. 3D-Var scheme CONV,AMV,SCATT, RADAR, GNSS, RAD

Implementation

Implementation

Footprint representation in observation space (using many interpolated model profiles) and averaging the simulated Tb after RTTOV simulations

Footprint representation in obs space

Svalbard, Isfjorden area

Svalbard, Isfjorden area

Svalbard, Isfjorden area

Footprint representation in obs space

Retrieved emissivity for each footprint operator point independently.

Footprint representation in obs space

Retrieved emissivity in the footprint operator

Open ocean: Fast Microwave Water Emissivity Model (version 4)

Over land: dynamic emissivity retrieval (Karbou et al., 2006)

Over sea ice: (Karbou et al., 2014)

Sea-ice chart of MET Norway

The footprint operator is more relevant where the **variability** in model fields is considerable and also comparable with the observation error

Copernicus Sentinel data 2020, processed by European Space Agency

AMSU-A channel 5

AMSU-A channel 6

AMSU-A channel 7

ITSC-24 Tromsø, Norway; 2023.03.20.

40°E

1.50 1.75

The use of the footprint operator is potentially more beneficial

Radiance footprint operator

Observing system experiments

Spin-up period: 1-31 January, 2021

Verification period: 1-28 February, 2021

AMSU-A pixels near the edges of the swath are active

Assimilated observations: SYNOP, AIREP, TEMP, PILOT, BOUY, SCATT, AMSU-A (no MHS and IASI)

Verification: normalised RMSE diff. (90% confidence) between the default and the footprint observation operator experiment - positive/negative values denoting positive/negative impact of the footprint operator

Radiance footprint operator Departure-based statistics

Radiance footprint operator Observing system experiments

Overall impact: neutral

Verification of temperature forecasts initialized at 06 UTC

Further improvements and plans

Preliminary results, more impact studies, 4D-Var

Optimization work, spatial sampling

Footprint operator + Slant-path operator (Bormann et al., 2017; Shahabadi et al., 2020)

Summary

In high-resolution DA, the use of the footprint operator is relevant and improves spatial representation of the satellite data

Benefit is expected where the variability is large

Footprint operator reduces O-B standard deviation and has promising impact on LAM forecasts

Thank you for your attention!

Questions?

