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The “conventional” (no machine learning) method that has
been used for model evaluation + assimilation experiments.

● Simplify vertical cloud structure: Complex structure
can be replaced by two homogeneous clouds with same
optical depth without changing reflectance significantly
→ only 4 parameters (optical depth, particle size)

+ 3 angles, albedo → 8 parameters per column
● Compute 8-dimensional reflectance look-up table

(LUT) with discrete ordinate method (DOM) for all
parameter combinations → 8GB, use lossy
compression →  21MB = O(CPU cache)

● Determine parameters from profile, interpolate in LUT

● Simple corrections for mixed-phase clouds and weakly
water vapor sensitive channels (0.8µm SEVIRI)

● Preliminary correction for 1.6µm channels

MFASIS for cloud-affected visible channels (LUT-based)
Method for Fast Satellite Image Synthesis

fast ( O(µsec/column) ), mean reflectance error < 0.01
Implem. in RTTOV 12.2 by DWD in collab. with MetOffice
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Could we replace the LUT by a neural network (NN)?
Motivation: Absorbing channels (water vapor, trace gases, clouds) and aerosols (many

different species) require additional input variables → LUT size would explode…

Approach: Keep idealized profile strategy (low number of input parameters) but use relatively
small (= fast) feed-forward neural network (several 1000 params.) instead of LUT

First goal: Replace LUT by NN for the visible 0.6µm channel (no additional inputs)

activation 
functions

NN structure: best results for 4 – 8 hidden layers (“deep”), CSU activation function
Training data: Synthetic (random numbers for input params., reflectance computed with DOM)

→ produce as much data as is required, cover full parameter space with constant density 
Training process: Tensorflow standard methods (Adam optimizer, early stopping strategy)

piecewise quadratic
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Error evolution during training for an example

99%

reflectance error

Training with Tensorflow:
on CPU, with Adam optimizer,
learning rate 5x10-4, batch size 256
early stopping strategy

3000 parameters, 6 hidden layers, 23 nodes/layer, 3.4x106 samples, trained for 13h

error distribution
after 1000 epochs

DOM-generated training data can be several 100 times smaller than DOM-generated LUT

Errors similar
to LUT version
RMSE=2.4x10-3
P99 < 8x10-3
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Performance

Adjoint / tangent linear codes

• Development of Fortran inference code
optimized for small NNs (<100 nodes/layer)
(vectorized, much faster than Tensorflow)

• Using a activation function without exp()
(CSU, piecewise linear/quadratic)
→ inference 3-4 times faster for small NNs

→  Final version for SEVIRI 0.6µm channel 
11 x faster than MFASIS-LUT, similar errors

(and MFASIS-LUT is ~200 x faster than DOM)

CPU time/sample for different
NN sizes and act. functions

ELU: 0.8µs

CSU: 0.25µs

• Adjoint (AD) + tangent linear (TL) versions of the nonlinear NN inference code (NL) are required
for variational and hybrid DA methods. → AD+TL implemented for Fortran code

• Advantage of neural networks:      AD/TL codes easy to derive, do not have to be modified
when training data or network structure is changed.

AD/TL is fully consistent with NL code, but reflectance derivatives show typically 10-20% relative

For more details see Scheck, L., 2021: A neural network based forward operator for visible satellite images and
its adjoint, Journal of Quantitative Spectroscopy and Radiative Transfer, DOI:10.1016/j.jqsrt.2021.107841



6CDOP 4 Steering Group Meeting, October 2022ITSC-24 Tromsø

● Stronger sensitivity to effective radius profiles
→ use two-layer clouds to provide information on

vertical effective radius gradients
● (Dark) ice in mixed-phase clouds is often below water

→ add a two-layer mixed-phase ice cloud
in the same location as the water cloud

● Weak absorption by CO2, CH4
→ use surface pressure and cloud top pressure

as input parameters to quantify influences
● Weak absorption by water vapor

→ use integrated water vapor as input parameter

→ In total 16 input parameters -- feasible with NNs,
16-dimensional LUT would have been very problematic.

NN learns more complex function → 2.5 times larger NN
and 4 times more training data required than for 0.6µm.

Additional input parameters for the 1.6µm channel

water

pure
ice

mixed-
phase

Ice 

Interesting for DA & model eval.: 1.6µm can distinguish
water from ice, is sensitive to particle size



7CDOP 4 Steering Group Meeting, October 2022ITSC-24 Tromsø

Profile simplification and network training errors

Simplification error for idealised profiles with
(1) One-layer clouds at fixed height (7 param.)
(2) + surface & cloud top pressure,

integrated WV (10 param.)
(3) + two-layer clouds (12 param.)
(4) + mixed-phase ice in water cloud

(all 16 param.)
(5) + bias correction

→ MAE 0.003, 99th percentile 0.024
→ all new input parameters reduce errors

MFASIS-NN (training data based on (5)):
MAE 0.004, 99th percentilde 0.027
→ additional training error is relatively small

(for a well-trained 5000 parameter NN)

SEVIRI
1.6µm
A=0.5

Evaluation with IFS profile collection available from NWP SAF
Simplification error: Reflectance error caused by replacing full profiles by idealised profiles

(both reflectances computed with DOM reference RT method), Rfull - Rideal
MFASIS-NN error: Simplification error + error caused by imperfect network training
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• Evaluation w. independent, regional model (30 days)

• For IFS profiles parameterizations for effective radii 
were used, but here 2-moment microphysics
scheme provides prognostic information on radii

MFASIS-NN SEVIRI 1.6µm results for ICON-D2 forecasts
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3 June 2020, 12 UTC

Mean absolute error 99th percentile

5000 IFS profiles 0.010 0.035

ICON-D2 (12UTC) 0.011 0.046

ICON-D2 (16UTC) 0.013 0.056

For more details see Baur F. et al., 2023: A neural network-based method for 
generating synthetic 1.6μm near-infrared satellite images (submitted to AMT)

Except for WV input variable and vectorization everything is in RTTOV 13.2.

Statistics are only slightly
worse than for IFS profiles.

Summary: 1.6µm works -- errors are now similar to 0.6µm errors
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Other instruments and channels
• Examples: Solar imager channels on 

MSG, MTG, MetOp, MetOp-SG
• 𝝺 ≤ 0.7µm channels work well

(enough information on Rayleigh
scattering in pressure input variables)

• Weakly WV-affected channels also
work well (2.2µm, 1.6µm, 1.2µm and
most 0.8µm channels)

• Errors are still too high for stronger
WV sensitivity: 1.3µm, 0.9µm,
broad 0.8µm channels (MSG, MetOp) 
→ will be solved by additional WV

input parameters
• Channels affected by other absorption

lines/bands will also need addtitional
input parameters
(e.g. 0.76µm, oxygen A band)

profile
simplification

error
Rfull - Rideal

(99th percentile)

acceptable

WV

O2
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First results for aerosols (preliminary)
A prototype based on CAMS aerosols

• Can we generate reflectances for
arbitrary combinations of many
aerosols species with one NN
and still have sufficiently small
errors?

• Same strategy as for clouds:
Replace complex aerosol profile
by simplified version with same
AOD, scale height, surface presure
and relative humidity

• First tests: Assume power law profile for extinction

• Prototype with 23 input variables (incl. AOD + scale height for 9 CAMS species), 
NNs with 8 layers, 36 nodes/layer (a bit larger than for clouds, still fast -- <1µs/sample)
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First results for aerosols (preliminary)
Evaluation with MACC-60L data set (5 x 4000 IFS profiles optimized for different species):
Profile simplification errors are similar to cloud case (mean abs. reflectance error 0.003) 

NN with 104 parameters can be trained to error levels similar to cloud case → promising…

profile
simplification
error
Rideal-Rfull

NN error during training
|Rideal-RNN| 
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Summary
• Replacing a compressed look-up table by a neural network in a forward operator for

solar satellite channels has significant advantages in terms of speed, memory
consumption, number of input parameters and time required to generate training data

• MFASIS-NN for clouds with additional input parameters yields good results for the
1.6µm channels and many other channels. The new developments have been
implemented in RTTOV 13.2 (except for WV input variable and code vectorization)

• A prototype of MFASIS-NN for CAMS aerosols looks promising
• Research at HErZ/LMU and DWD will continue. In particular, we plan to

- finish first aerosol version, support further channels (in particular WV sensitive)
- use feature extraction capabilities of neural networks for more complex channels
- include 3D radiative transfer effects in neural network

● Baur F. et al., 2023: A neural network-based method for generating synthetic 1.6μm near-infrared satellite
images (submitted to AMT)

● Scheck, L., 2021: A neural network based forward operator for visible satellite images and its adjoint,
Journal of Quantitative Spectroscopy and Radiative Transfer, DOI:10.1016/j.jqsrt.2021.107841

● Scheck, Weissmann, Mayer (2018): Efficient methods to account for cloud top inclination and cloud overlap in
synthetic visible satellite images, JTECH, Vol. 35, Issue: 3, p. 665-685.

● Scheck, Frerebeau, Buras-Schnell, Mayer (2016): A fast radiative transfer method for the simulation of visible
satellite imagery, Journal of Quantitative Spectroscopy and Radiative Transfer, 175, p. 54-67.

Publications
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Why are we interested in solar channels?

• High-res. cloud information (also for low clouds, 
complementary to thermal channels) for improving
forecasts (including radiation)

• Aerosols (optical properties differ significantly)
• Channels sensitive to water vapor, O2, …
Challenges: Multiple scattering, 3D effects
→ Standard radiative transfer methods too slow for DA

water/ice
content

radius

radius

VIS 0.6µm
solar

cloud
top
temp.

phase

NIR 1.6µm
solar

IR 10.8µm
thermal

CAMS
aerosols
0.6µm
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How to split clouds in two layers
• 50% + 50% of optical depth for thin clouds (same probability to be scattered)

• Thicker clouds: e.g. upper 10% + rest, because deeper layers contribute less to reflectance
and it is more important to resolve effective radius gradients near the top of the cloud

• Aim: Maximize error reduction, compared to one-layer clouds

• Error reduction computed for collection of 5000 IFS profiles sampled from one year of 
global IFS short-term forecasts (maximizing diversity in cloud profiles). 64 random angle 
combinations were used for each profile. Effective radii computed with parameterizations.
→ Parameterization for near-optimal depth fraction of upper layer f
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optical depth fraction of upper layer f Parameterization of the fraction
as function of optical depth, zenith angle

Example: Ice cloud
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How to compute parameters from NWP profiles
• Cloud top height is where cloud optical depth exceeds 1
• Boundary between water-or-mixed-phase / pure ice cloud determined by water cloud

optical depth > 0.5 threshold
• Boundaries between lower / upper cloud layer for water/ice determined by parameterization
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Taking cloud top inclination into account (3D RT effect)

Cloud top tilted away from/towards sun → reflectance lower / higher

Fast approximation: Find optical depth 1 surface, determine inclination angles
Compute 1D RT solution in rotated frame of reference (in which inclination is zero),
transform reflectance back to non-rotated frame

Cloud top inclination correction →  Reduced errors, increased information content
Much more cloud structure is visible, in particular for larger SZAs

SEVIRI 0.6mu+0.8mu, 3 June 2016, 6UTC 3h COSMO fcst without 3D correction



17CDOP 4 Steering Group Meeting, October 2022ITSC-24 Tromsø

SEVIRI 0.6mu+0.8mu, 3 June 2016, 6UTC 3h COSMO fcst with 3D correction

Taking cloud top inclination into account (3D RT effect)

Cloud top tilted away from/towards sun → reflectance lower / higher

Fast approximation: Find optical depth 1 surface, determine inclination angles
Compute 1D RT solution in rotated frame of reference (in which inclination is zero),
transform reflectance back to non-rotated frame

Cloud top inclination correction →  Reduced errors, increased information content
Much more cloud structure is visible, in particular for larger SZAs


