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Interferometer	Hyperspectral	Infrared	Sounding	Concept	Origin:	
•  Kyle,	1977	(Temperature	Sounding	with	a	Partially	Scanned	Interferogram,	Applied	Optics	326-333)	
•  Smith,	Howell,	and	Woolf,	1979	(The	Use	of	Interferometric	Radiance	Measurements	for	Sounding	
the	Atmosphere,	Journal	of	the	Atmospheric	Sciences,	Vol.	36,	No.	4	April	1979)	

•  Revercomb,	1980:		NASA	and	NOAA	funded	the	UW-SSEC	to	build	a	High-resolution	Interferometer	
Sounder	(HIS)	to	experimentally	demonstrate	the	concept	using	the	NASA	ER-2	Aircraft	
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 Historical Background 
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Distance (75 km) 

Relative	Humidity	Observed	Using	ER-2	HIS	in	1986	



Shannon Sampling Enables High Vertical Resolution to Be 
Realized With Hyperspectral Measurements 

The hyperspectral resolution sounding concept is based on 
Shannon Information Theory, which explains how a small 
signal, buried in random noise, can be amplified by 
accumulating repetitive samples. 
•  The signal level is amplified at a much faster rate (i.e., 

SQRT of the sample number) than is the noise  
•  A single measurement cannot “see” fine-scale vertical 

structure features because a radiance signal arises from a 
very large depth of the atmosphere (large weighting 
function width). 

• However, as one uses more spectral noise independent 
radiance measurements in the profile retrieval, small-scale 
vertical features begin to be resolved.  

•  This is why hyperspectral sounding instruments have been 
designed to observe the radiance in thousands of spectral 
channels.  
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Atmospheric Sounding Spectral Bands 

GIFTS/GIIRS/IRS	
0.625	cm-1)	

MW	LW	 SW	

MW/SW		LW	

CrIS	(0.625cm-1)	

IASI	(0.25	cm-1)	
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LW Band Information Importance 
The LWIR observations are critical for the following reasons: 
• Provides the highest vertical resolution temperature sounding  

• Radiances not contaminated by cloud and surface reflected sunlight,  

• Radiance measurements across the 9 to 12 micron “window” region 
-  Surface skin temperature 
- Cloud top ice/water phase (aircraft icing) 
-  Planetary Boundary Layer (PBL) profile measurements  
- Detection of dust aerosol concentration and layer top altitude 

• Atmospheric ozone (9.6µm O3 band radiance spectrum)	
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Optimal Estimation (OE) Theory Retrieval and Information Content Definitions 
Rodgers, C.D., Inverse methods for atmospheric sounding: Theory and Practice, World scientific, 2000 

 

Vertical Degrees of Freedom and Information Content Definitions
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TSε

−1(y−Kxap )

G = ŜKTSε
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Implementation of OE Theory for  
Instrument Spectral Specifications 
•  The Rodger’s information analysis tool in its linear form applies to radiance 

information content of atmospheric profiles if they are known ‘a priori’, rather 
than to be measured. 

•  Two important implementation procedures are necessary for using the linear form 
of OE theory for instrument specifications since the atmospheric profiles cannot 
be assumed to be known prior to their measurement. 

-  A dry atmospheric condition must be assumed to exclude erroneous water 
vapor radiance contributions to the Temperature profile Jacobians.   

-  The water vapor density error dependence on temperature retrieval error must 
be included for calculating water vapor profile accuracy and information 
content. This is accomplished by first computing the OE estimates of radiance 
related temperature and water vapor profile error covariances and then adding 
the water vapor density error covariance matrix determined from temperature 
profile error covariance using the ideal gas law for moist air. 
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(a)  Atmospheric temperature profile weighting functions 

(b) T & H2O Degrees of Freedom (/km) for mid-wave plus short-wave spectrometer 
estimated by “including” and “excluding” H2O Temperature Jacobians in OE estimation.    

MW+SW Temperature Jacobians Assuming H2O is Known Vs. H2O Unknown 
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Including H2O Channel T- Profile Jacobians Greatly Overestimates the T & H2O Number 
of Degrees of Freedom per Km (i.e., Inverse Vertical Resolution) of Profile Retrieval 
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MW + SW Theoretical Vs. Empirical Results 
•  The	errors	in	the	theoretical	estimations	of	a	MW+SW	instrument	capability	by	
including	H2O	temperature	profile	Jacobians	are	confirmed	by	comparing	actual	CrIS	
profile	retrievals	for	September	13,	2020	with	analyses	of	radiosonde	
measurements		

ITSC-XXIII:	Virtual	Meeting,	24	-	30	June	2021	

Theoretical	Estimation	of	a	MW+SW	Instrument	Capability	is	Confirmed	By	CrIS	Profile	Retrievals	 



Radiosonde Comparisons - With LW Vs. Without LW Band 
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CrIS	Vs.	Radiosonde	Profile	Comparisons	Illustrate	Decreased	Temperature	and	Water	Vapor	Profile	
Vertical	Resolution	Resulting	From	the	Exclusion	of	Longwave	Band	Radiance	Observations 

Radiosonde	
CrIS	With	LW	
CrIS	Without	LW	

Radiosonde	
CrIS	With	LW	
CrIS	Without	LW	



CrIS Band Information Content and degrees of Freedom 
• Shannon information content 

and degrees of freedom (i.e., 
number of independent pieces 
of information) 
• Considered 1x, 2X, and 4x CrIS 

NEdN noise performance. 
•  Figure on the right shows results 

– Green cases indicate best band 
combinations  and noise levels 
for NWP profile assimilation. 

– Red cases indicate poorest band 
combinations  and noise levels 
for NWP profile assimilation. 
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Theoretical studies show that the longwave plus midwave band combination is most 
important for providing profile information for numerical weather forecasting 
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Conclusions 
•  The results show that when the Rodger’s optimal estimation information theory is 
applied properly for specifying the spectral requirements for a new satellite sounding 
instrument,  the sounding capabilities of a MW+SW band instrument are greatly 
inferior to satellite instruments that include the LW band.   

•  This theoretical result is shown to be consistent empirical results obtained from 
current satellite hyperspectral observations.  

•  It is shown that failure to apply Rodger’s information content theory in its linear 
form properly, for the purpose of specifying a future infrared sounding instrument’s 
measurement requirement, can lead to the misguided belief that the traditional LW-
band is no longer needed for NWP applications of satellite sounding radiance data. 
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