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Motivation 1 — the ML landscape

« Machine learning (ML) is a very hot topic.
« ECMWEF is investigating ML for various applications (we have a “ML Roadmap™).

* Tools for training neural networks are now widely available and are easy to use.
Motivation 2 — ML algorithms can be super-fast

» Operational NWP forecasts must be delivered on time — computational cost
savings are always welcome (including IR cloud detection).

Motivation 3 — learning what cloud information is in the spectra

« Currently we use observations and clear-sky model equivalents to determine which
channels are cloud-affected.

« However, is there sufficient information in the observations alone to determine this? If so,
a neural network (NN) could do this classification given a large enough training set. This
may help to avoid poor cloud detection in the presence of localised background errors.
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Important notes

 This study uses IASI brightness temperatures.

» The approach is applied to individual spectra in order to dynamically
identify which channels are cloud-affected and hence should not be
assimilated.

* It is not an image-recognition/convolutional approach to identify spatial
cloud patterns.

* We want to know if the observed spectra alone contain enough information
to be able to identify which channels are affected by cloud — open science
question.
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Approach — train a NN to replicate the McNally and Watts cloud detection flags
(and AVHRR clustering checks), but using only observed |IASI values as inputs
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McNally A, Watts P. 2003. A cloud detection algorithm for high-spectral-resolution infrared sounders.
Q. J. R. Meteorol. Soc. 129: 3411- 3423, doi: 10.1256/qj.02.208
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For the ML aficionados...

« Supervised classification problem.

* Input brightness temperatures normalised: (BT-260)/60
* Input data: 1 week Metop-C IASI from 420 channels.

« 25% of data reserved for hold-out validation.

* 420 input neurons (one per channel)

« Two dense hidden layers (dimension 420); activation function: Rectified linear unit (ReLU).

Output cloud flag layer: 420 neurons; activation function: sigmoid (0<x<1).

Loss function: binary cross-entropy.

Epochs: 250 (subjectively chosen to avoid over-fitting).

Minimiser:; “adam”.

Thresholding of sigmoid output chosen to preserve ratio of clear/cloudy flags.
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Histograms of observations minus simulations for a few channels
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Initial fit looks good, even with a limited training set
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Preliminary assimilation experiments

« ECMWEF has developed the “FNN” package (https://arxiv.org/pdf/2210.13817.pdf,
https://qgithub.com/cerea-daml/fnn/) which takes sequential NNs from Keras/TensorFlow and

allows them to be run efficiently within Fortran code (as an aside, TLs and adjoints are
calculated implicitly).

» This has allowed the existing cloud detection to be replaced by the NN version for testing.
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Short range forecast fit to independent observations — neutral is the goal!
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Outlook

« Open science question: is there enough information in the observed spectra
to replicate the cloud detection? Tentative indication is “yes”!

* Further refinement of the NN is needed to demonstrate this.

« Assuming it is possible, operational cloud detection could be performed as
soon as observations are received (i.e. outside the “time critical path”) — no
need to wait for background fields to become available. Or, more likely, we
can use the NN as an additional pre-screening check).

« Comparisons of computational cost have not been performed, but a day of
|ASI spectra can be cloud-screened on modest hardware in about 3 seconds.

« The NWP-SAF develops the CADS package. Including the neural network
in the package is being considered by the CADS development team. We
would welcome feedback!
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Questions
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