Principal Component-based Radiative Transfer Model (PCRTM) for Hyperspectral Remote Sensors for UV, VIS, NIR, IR, and FIR Spectral Regions

Xu Liu¹ (Presented by Q. Yang)

Q. Yang^{1,2}, W. Wu¹, X. Xiong¹, M. Zhao², P. Yang³, R. Spurr⁴, D. K. Zhou¹, and A. M. Larar¹

 ¹NASA Langley Research Center, Hampton, VA 1SSAI, Hampton, VA
³Texas A & M, College Station, TX, USA
⁴RT Solution, Cambridge, MA, USA

There are two key challenges in exploring information content of hyperspectral sounders

- Challenge No. 1: computation speed of Radiative Transfer Model (RTM)
 - Line-by-line: millions of monochromatic radiative transfer (RT) calculations
 - Channel-based RTMs: thousands of polychromatic RT calculations
 - Principal Component (PC)-based RTMs: hundreds of monochromatic RT calculations
- Challenge No. 2: need effective methods to deal with clouds
 - 90% of sounder FOVs contain clouds need accurate and fast cloudy RTMs
 - > Only 5-20% of channels due to RTMs speed and cloud RT accuracy limitations
 - Fitting cloud-cleared radiances does not satisfy radiometric closure requirement
- Principal Component-based RTM (PCRTM) addresses these challenges
 - Very fast
 - Includes all spectral channels using PC scores

Principal Component Based Radiative Transfer Model (PCRTM)

- PCRTM was specifically for hyperspectral remote sensors
 - Number of RT calculations are << number of spectral channels
 - \circ $\,$ Orders of magnitude faster than LBL RTMs $\,$
 - RT calculations done monochromatically
 - Physical-based RTM and accurate relative to LBL RTMs

$$\vec{R}^{ch} = \sum_{i=1}^{N_{EOF}} c_i \vec{U}_i + \vec{\varepsilon} = \sum_{i=1}^{N_{EOF}} \left(\sum_{j=1}^{N_{mono}} a_j R_j^{mono} \right) \vec{U}_i + \vec{\varepsilon}$$

- Provides analytical Jacobian needed for satellite data inversions

Sensor	Channel Number	PC score (seconds)
CLARREO, 0.1 cm ⁻¹	19901	0.014 s
CLARREO, 0.5 cm ⁻¹	5421 0.011 s	
CLARREO, 1.0 cm ⁻¹	2711	0.0096 s
IASI, 0.25 cm ⁻¹	8461 0.011 s	
AIRS, 0.5-2.5 cm ⁻¹	2378 0.0060 s	
CrIS,0.625-2.5 cm ⁻¹	1317	0.0050 s
NAST-I, 0.25 cm ⁻¹	8632	0.010 s
S-HIS, 0.5 cm ⁻¹	4316 0.008 s	
CrIS, 0.625 cm ⁻¹	2211 0.009 s	

- Multiple scattering clouds and aerosols included
- Wide range of spectral coverage
 - Thermal: 50-3000 cm⁻¹
 - Solar: 200 nm 2500 nm
 - Suitable for AIRS, CrIS, IASI, PREFIRE, IRS, IASI-NG, NAST-I, S-HIS, CLARREO, CPF, SBG, TEMPO, OMI, SCIAMACHY ...
- Fast:
 - Milliseconds to fraction of seconds in IR
 - 3-4 orders of magnitude faster than LBL in solar
- Accurate relative to LBL:
 - Thermal: Bias error < 0.002 K RMS error < 0.03 K
 - Solar: bias error < 0.001%, RMS error ~0.05%

wave number(cm⁻¹)

PCRTM Calculated Radiance Spectra Agree Well With Satellite Observations

PCRTM Reduces RT Calculations by 3-4 Oders of Magnitude Relative to Correlated- Method for CPF-type Spectrometer

SCIAMACHY

PCRTM	nmo	nch	прс	nsmo	Speed-up
Land (8 nm)	259,029	546	220	262	988
Ocean (8 nm)	259,029	546	267	240	1079

Number of radiative transfer calculations for PCRTM are reduced by 3 orders of magnitude relative to modtran for spectral range from 300 nm to 2500 nm

Hybrid Stream method further speed up PCRTM-SOLAR by another factor of 5-10 relative to 32-stream PCRTM

PCRTM	M1	M2	Speedup to Regular PCRTM- SOLAR	Speedup to MODTRAN 5
Land 8 nm	263	49	5	5286
Ocean 8 nm	241	23	10	11,262

Example of HS-PCRTM Accuracy Relative to VLIDORT for TEMPO/OMI Ozone Spectral Region

- The Hybrid Stream PCRTM (HS-PCRTM) can further reduce the computational time
 - Perform 2-stream monochromatic RT calculations at original PCRTM selected frequencies
 - Perform higher streams RT calculations at even less monochromatic frequencies
 - The accuracy is not comprised (see example below)

(Xu.Liu-1@nasa.gov)

Example of PCRTM for very high spectral resolution(0.001 nm) polarized O₂-A band

- Only 12 monochromatic RT calculations are needed to faithfully represent the 0.001 nm O₂-A band
- A few dozens more monochromatic RT calculations are needed to include Q, U polarized components of the Stokes vector

Examples of using PCRTM to generate high-resolution Proxy Data for Satellite Remote Sensing Applications

From PCRTM high-res Spectrum @488 nm

From PCRTM high-res Spectrum @1610 nm

From observed VIIRS M3band @488 nm

From observed VIIRS M10-band @1610 nm

(Xu.Liu-1@nasa.gov)

PCRTM High-fidelity Simulator for CPF at Various Spatial Resolutions

Global Scale, Data Intensive Simulations

Global TOA reflectance high spectral resolution spectra displayed at 646 nm

Summary

- PCRTM was first developed in 2004 for NAST-I instrument with over 8600 channels
 - Extended to AIRS, CrIS, IASI, S-HIS, CLARREO-IR, PREFIRE..
 - Two Mature retrieval algorithms have been developed based on PCRTM
 - Please visit Dr. Xu Liu's poster (13p.04) on Tuesday, March 21 for the retrieval results for 20 years of Aqua/AIRS, SNPP/CrIS, and NOAA20/CrIS
- PCRTM Accelerates the RT calculations by exploring spectral correlations
 - PCRTM performs RT calculations monochromatically (i.e. accurate and physical)
 - Hybrid-Steam PCRTM (HS-PCRTM) can further reduces RT calculation times
 - Handle multiple scattering clouds
 - Works for polarized RT calcuations of (I, Q, U)
 - A few ms per spectrum in IR spectral region
 - 3-4 orders of magnitude faster than MODTRAN in solar spectral region
 - Accurate relative to line-by-line models
 - PCRTM provides Jacobian needed for a physical retrieval algorithm
- We have developed PCRTM for solar spectral region
 - Completed TEMPO/OMI spectral region
 - In the process of extending to the whole TEMPO spectral regions
 - VLIDORT is used for radiative transfer solver
 - In the process of developing PCRTM for SBG decadal service mission
 - In the process of testing the model using EMIT data