

SYNERGY Infrared + Microwave satellite observations

PRESENTER

Ethel VILLENEUVE PhD student

THESIS DIRECTOF

Nadia FOURRIE Philippe CHAMBON

Statistical study of bayesian retrieval in a simulated framework

PROBLEMATICS

Difficulties and questions

METHODS The use of Bayesian inversion

TABLE OF CONTENTS

03

01

RESULTS

on synergistic use of IR and MW data

04

02

FUTURE WORKS

Perspectives

PROBLEMATICS

Combining IR and MW all sky data

✦

01

+

IR	- All observations inclear-sky only
MW	 Observations from MHS, MWHS2, GMI, AMSR2 in the ECMWFall-sky route Observations from AMSUA, ATMS, SSMI/S iplear-sky

COMPLEMENTARITY of IR & MW observations

sensitivity

IR	Top of clouds, TOA, Cloud fraction	
MW	Cloud ice (submm) Precipitations, Cloud sounding	

PhD objective : Assimilation of IR data within clouds with a specific focus + on synergy between IR and MW data.

PROBLEMATICS

Consistently assimilate IR observations in addition to MW observations?

DIFFICULTIES

Inconsistencies in RT modelling between IR and MW

NWP model uncertainties

METHODS

Evaluating the **relative importance** of RT inconsistencies compared to model uncertainties with the comparison of **retrieved profiles in** a simulated 1D framework

+

METHODS

+

02

Building 1D framework with simulated observations (controlled sources of errors in RTTOOLD and RTTOV SCATT and in NWP parameterisations)

SPACE MISSIONS

MICROWAVE

EUMETSAT POLAR SYSTEM (EPS) SECOND GENERATION

MetOpSGB (early 2025)

Microwave Imager (MWI) Ice Cloud Imager (ICI) INFRARED

METEOSAT THIRD GENERATION

MTGI (dec. 2022) Flexible Combined Imager (FCI)

18.7 – 183.31 GHz

183.31-664 GHz

 $3.8-13.3\;\mu m$

FRAM	EWORK
------	-------

noERR experiment

ADDING PERTURBATIONS:

+

mRTex	periment	mMODexperiment		
Default	Perturbations in FG	Default	Perturbations in FG	
Geer et al. 2021 PSD & shapes	Geer and Baordo 2014 PSD & shapes	Default value of operationa ARPEGE forecast model – microphysical and convection	Replace the default value in parameterisations by a random value in a range defined by ARPEGE	
Baran 2018	Baum 2011	parameterisations	system	
	mRTex Default Geer et al. 2021 PSD & shapes Maran 2018	mentDefaultPerturbations in FGGeer et al. 2021 PSD & shapesGeer and Baordo 2014 PSD & shapesImage: Image: Image	mRTexperimentmMODeDefaultPerturbations in FGGeer et al. 2021 PSD & shapesGeer and Baordo 2014 PSD & shapesImage: Section of the section of th	

^{*} mALL experiment ₊

mRTperturbations (in RTTOV) mMODperturbations (in ARPEGE)

9/20

Which one predominates ?

Do the differences in the radiative transfer modelling have a significant impact on retrievals ?

STATISTICAL STUDY

June 2020						
1	2	3	4	5	6	7
8	9	10	11	12	13	14
15	16	17	18	19	20	21
22	23	24	25	26	27	28
29	30					

December 2020						
	1	2	3	4	5	6
7	8	9	10	11	12	13
14	15	16	17	18	19	20
21	22	23	24	25	26	27
28	29	30	31			

RESULTS ⁺

Can we build a synergy?

✦

03

+

+

noERR experiment: STD study

STD of OBServation RETrieval

Significance test between combined (IR+MW) inversion and single instrument inversion

Quertinsion :

Po Ditive impact loftli Rnin na ighærtakti pudet and för MVM i RHMV Fraghticugye?

noERR experiment: STD study

12/20

Previpitatingenychronnetlectrisnippedoverimentsofn Rhe anblecompronhibediomMW or?

Synergy? Yes

How do the perturbations affect the synergistic effect?

STD differences $DIFF_{mEXP} = STD_{mEXP}^{c} - STD_{mEXP}^{i}$

> 0 if combined inv. less goothan sing-inst.inv.
< 0 if combined inv. bettethan single inst. inv

Perturbations impacts

Coloured areas superposition gives information on the amount of differences introduced by the perturbations

Perturbations impacts

Coloured areas superposition gives information on the amount of differences introduced by the perturbations

Conclusions

mMOD has more impact than mRT on CIW.

PERTURBATIONS IMPACTS

mMOD

mALL

Conclusions

mMOD has more impact than mRT on Snow.

PERTURBATIONS IMPACTS

Article submitted to AMT Synergistic approach of hydrometeor retrievals: considerations on radi transfer and model uncertainties in a simulated framewo E. VILLENEUVE, P. CHAMBON and N. FOURRIE

FUTURE WORKS

 $\mathbf{04}$

✦

+

+

✦

+

+

+

Implementing all-sky IR GOES16/ABI raw radiances in 4D-Var assimilation system

+

+

Starting point: code branch that Alan Geer shared with us and used in his paper on IASI all-sky assimilation (2019)

Article submitted to AMT Synergistic approach of hydrometeor retrievals: considerations on radi transfer and model uncertainties in a simulated framewo E. VILLENEUVE, P. CHAMBON and N. FOURRIE

APPENDIX

A1 VALIDATION

+

+

+

+

+

+

+

✦

+

+ +

Cloud predictor (IR)

Cloud predictor (MW)

Desroziersdiagnostic (Desrozierset al. 2005)

To determine observation errors

$$Dx = \sqrt{(BT_{OBS} - BT_{FG}) imes (BT_{OBS} - BT_{RET})}$$

Several iterations

- 1. Simulate BTs withNEdTas observation error
- 2. Compute D1 for each channel
- 3. Simulate BTs with D1 as observation error
- 4. Compute D2 for each channel
- 5. ..
- 6. Stop whenDn and Dn 1 do not differ anymore

UseDn as observation error in the experiments

PERTURBATIONS

+

A2

+

STARTING POINT

Microphysical closuffecent progress install radiance assimilation, Geer A. et al. 2019 (modified)

COMPLEMENTARITY of IR and MW

MW : Precipitations, cloud sounding ; MW sub-mm : cloud ice

IR : Top of clouds, TOA, cloud fraction

Parameterisation in FG

ADDING PERTURBATIONS: mMOD experiment

Parameters

noERR

Default value (operational model ARPEGE)

Random value in a range defined within the ARPEGES (ensemble prediction system) (Descamps et al. 2014)

Microphysical scheme:

sedimentation velocity(cloud ice, cloud water, snow, raia),to-conversion(cloud ice into snow, cloud water into rain, minimum ice content, maximum ice content, critical water content),coefficients(accretion, stratification and ice aggregate, aggregation, calculation of water/ice partitioning, calculation of relative humidity, calculation of cloud liquid water into rain conversions, maximum evaporation rate)

Convection scheme: downdraft mass flux, entrainment rate, detrainment rate

A3 GRAUPELS

+

✦

+

+

✦

✦

Conclusion :

Positive impact of IR in higher altitude and of MW in lower altitude.

noERR experiment: STD study

Precipitating hydrometeors: improvement of IR and compromise for MW

Synergy?

mRT has more impact than mMOD on Graupel.

PERTURBATIONS IMPACTS

=> reduce negative effects of mMOD

Graupel

Geer et al. 2021 Bulk hydrometeor optical properties for microwave and sutillimetre radiative transfer in RTT SVCATT v13.0 figure 9.a (modified)

Perturbations impacts

Impact of hydrometeors shape modifications

