

All-sky Radiative Transfer Simulations based on the Advanced Radiative transfer Modeling System

Yi-Ning Shi, Fuzhong Weng, Jun Yang, Yang Han, Hao Hu

CMA Earth Modeling and Prediction Centre China Meteorological Administration (CMA)

Clear-Sky RT Simulation

Cloudy-Sky RT Simulation

ARMS Application & Next Step

- □ Key Drivers for Developing ARMS:
- a) Direct Radiance Assilimations Requirments
- b) Support Sensors aborad Fengyun Satellites

D Developing Process of ARMS:

□ ARMS Forward Structure:

□ ARMS Analytical Jacobian Calculation:

Tangent Linear Module	FWD: $Z = F(X, Y)$	TL: $\delta Z = \frac{\partial F}{\partial X} \delta X + \frac{\partial F}{\partial Y} \delta Y$
Adjoint Module	FWD: $Z = F(X, Y)$	AD: $\delta X = \frac{\partial F}{\partial X} \delta Z$ $\delta Y = \frac{\partial F}{\partial Y} \delta Z$

Gaseous Transimittance: Procedure:

For VIS/IR broadband Sensor:

5 variable gas components are considered For IR Hyperspectral Sensor:

8 variable gas components are considered For MW Sensor:

2 variable gas components are considered

An exhausting search is performed for each gas component and channel to select the best set of predictors

□ Gaseous Transimittance: Accuracy Test (FY-4A GIIRS)

Benchmark BTs: from LBL transimittance

ARMS BTs:

from Coefficients training in ECMWF 83 profiles

Surface Emissivity:

Lambertian Surface with Emissivity 0.98 is set in the comparsion

□ Surface Emissivity:

Emissivity Module/Atlas which ARMS used now

	Surface	Ocean
MW Sensors	LandEM	FASTEM 6
	TELSEM2 atlas	
IR Sensors	NPOESS IR atlas	WuSmith Emissivity
		model
VIS Sensors	NPOESS VIS atlas	NPOESS VIS atlas

□ Surface Emissivity:

FASTEM:

Reflection is not calculated directly and obtained by a correction of 1-Emissivity.

A MW Ocean Bidirectional Reflection Model is proposed following Two-scale theory. The Model is now ready for being coupled into ARMS.

Detailed can be found at 10p.04 Improved Microwave Ocean Emissivity and Reflectivity Models Derived from the Two-scale Roughness Theory

□ ARMS Clear-Sky RT Simulation Result (MW):

➢MetOp-C AMSU-A Intercomparsion between ARMS and RTTOV

Clear-Sky RT Simulation

□ ARMS Clear-Sky RT Simulation Result (IR):

≻FY4A AGRI IR Channel Intercomparsion between ARMS and RTTOV. (Tang et al. 2021)

Cloudy-Sky RT Simulation

□ ARMS Particle Scattering (VIS/IR):

- ARMS Team cooperate with Zhejiang University (Prof. Lei Bi) and Sun Yat-sen University (Prof. Bingqi Yi) for building Aerosol/Cloud Scattering properties Dataset.
- Mie Scattering and T-Matrix is applied to handle spherical and non-spherical particle.

□ ARMS Particle Scattering (MW): Procedure

□ ARMS Particle Scattering (MW): Accuracy Test

Benchmark Values:

Determine the number of dipoles

□ ARMS Radiative Transfer Solver

• In cloudy regions and Visible Spectrum, multiple scattering effect needs to be considered in RT equation.

$$\mu \frac{dI^{m}(\tau,\mu)}{d\tau} = I^{m}(\tau,\mu) - \frac{\omega}{2} \int_{-1}^{1} I^{m}(\tau,\mu') P^{m}(\mu,\mu') d\mu' - \delta_{m,0}(1-\omega) B - (2-\delta_{m,0}) \frac{\omega}{4\pi} F_{0} P^{m}(\mu,-\mu_{0}) e^{-\tau/\mu_{0}}$$

$$I(\tau, \mu, \phi) = \sum_{m=0}^{2M-1} I^m(\tau, \mu) \cos[m(\phi - \phi_0)]$$

• ARMS use Discrete Ordinate Method to solve the equation.

□ ARMS Radiative Transfer Solver

• In order to take both radiance and polarization states into account, Weng's VDISORT solver has been investugated in Rayleigh and L13 cases.

□ All-Sky RT Simulations: Procedure

□ All-Sky RT Simulations: Results

FY4B AGRI IR Channel

□ All-Sky RT Simulations: Results

➢ FY3D MWTS

□ ARMS now has been used for forward simulations, 1DVAR retrivals, data assilimation.

- Application in 1DVAR retrival can be found at:
 6.09 The Cloud-dependent 1DVAR Algorithm for Retrieving Precipitation from FengYun-3D/E Microwave Sounders
- Application in CMA-GFS satellite data assilimation system: 15.03 Assimilation of FengYun Satellite Data in CMA-GFS Using Advanced Radiative Transfer Modeling System (ARMS)

12.02 Evaluation of Assimilation and Prediction Effects of Different Satellite Observation Operators in CMA-GFS

Gaseous Transimittance Module Updated:

Develop Gaseous Transimittance to support UV hysperspectral sensors

□ Surface Emissivity Module Updated:

Coupling the MW Ocean Bidirectional Reflection Model and test its effect in forward simulation, ocean surface wind retrival and data assilimation.

T RT Solver Module Updated:

Coupling Weng's VDISORT into ARMS, and accelerating VDISORT to meet the need to assilimating the satellite data with high temporal and spatial resolution.

THANKS!

CMA Earth Modeling and Prediction Centre China Meteorological Administration (CMA)

