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Definition of the tuning 
Denoting εb and εo the background and observational errors, let B be the background 
error covariance matrix specified in an operational data assimilation system and let Bt 
= E(εb.εbT ) be the “true” matrix (E is the mathematical expectation operator). In the 
same way let us define R and Rt « true » = E(εO.εOT ) as the specified and true 
observational error covariance matrices, and Rk, Rtk and Bl, Btl the specified and 
true matrices related to the kth type of observations and to the lth independent subpart 
of the control vector. 
Assuming that one can write 

Bt= sb B, Rt= so R 
or  

Rtk= sok Rk, Btl= sbl Bl, 
the aim of this work is to answer the question:how to evaluate the tuning coefficients: 
so and sb (sok and sbl)? 
Desroziers and Ivanov (2001) proposed to use an optimality criterion found by 
Talagrand (1999). The tuning coefficients are those for which this criterion if fulfilled. 

Desroziers and Ivanov’s method (2001) 
Let J=ΣJok + ΣJbl be the suboptimal cost function used in an operational system;  
let Jt=ΣJok/sok + ΣJbl/sbl be the optimal cost function using « true » matrices.  
If xa is the minimizer of Jt then, following Talagrand (1999), the expectations of the 
subparts of the cost function at the minimum are: 
 

E(2Jok(xa)/sok)=Tr [πk(Ip –HK)πkT] 
E(2Jbl(xa)/sbl)=Tr (πlKHπlT). 

 
Where K is the Kalman gain matrix, H is the observation operator, and πk and πl are 
respectively the projections onto the kth type of observations and to the lth independent 
subpart of the control vector. The latter equations may be written 
 

sok= 2Jok(xa)/ Tr [πk(Ip –HK)πkT] 
sbl= 2Jbl(xa)/ Tr (πlKHπlT). 

 
In this case K can be written as a function of sok and sbl. This is therefore a fixed-point 
relation. We will use a fixed-point algorithm to compute the tuning coefficients, going 
from step i to step i+1 using the following relations: 

s(i+1)ok= 2Jok(xa (s(i)))/ Tr [πk(Ip –HK(i))πkT], ∀k  
s (i+1) bl= 2Jbl(xa(s(i)))/ Tr (πlK (i)HπlT), ∀l. 



It is to be noticed that no matrix is explicitly stored in the system. In order to compute 
Tr (HK) one can use a randomized trace estimation technique, several of them exist. 
For example, Desroziers and Ivanov adapted a method proposed by Girard (1987). 

Some properties of the method 
Chapnik et al. (2003) have shown that: 

the method is equivalent to a Maximum likelihood tuning of the variances. 
Maximum likelihood is a general method to tune parameterized probability densities 
with respect to observed data; its application in data assimilation is discussed in Dee 
and da Silva (1998); 

the quality of the estimates depend on the number of observations; 
tuning independently the guess errors and the observation errors or two statistically 

independent observation error variances has little or no effect on the coefficients; 
Observations with spatially correlated errors, analyzed with a prescribed diagonal R 

matrix may have their variance (possibly grossly) under estimated by the method; 
the computed values are temporally stable (up to four years); on the contrary they 

react quickly and increase when the quality of observations is degraded: they behave 
like variances are supposed to. 
 
Moreover, as already stated by Desroziers and Ivanov, the first iteration of the fixed-
point algorithm is a good approximation of the final result. It is possible to show that 
it is a biased estimate of the tuning coefficients, the more observations there are, the 
smaller the bias is. 

Another implementation of the method 
Following Sadiki and Fischer (2003), the fixed-point algorithm was used with one 
iteration only, and to increase the accuracy of the estimate, several situations were 
“concatenated”: 
If Joki(xa) is the minimum of the subpart of the cost function related to observation 
type k on day i and Tr [πk(Ip –HiKi)πkT] is its expected value if it were optimal, then 
the tuning coefficients are computed as 

sok=(Σi Joki(xa)) / (Σi Tr [πk(Ipi –HiKi)πkT] ). 
As suggested by Sadiki and Fischer, the different dates used in the computation are 
separated by at least 5 days in order to prevent time correlation. 

Results 

Results with simulated satellite radiances 
Figure 1 shows the ability of the method to retrieve optimal variances in a simulated 
case. In this case the true standard deviations are the operational values and the mis-
specified standard deviations are equal to the square root of the operational values; six 
dates, separated by more than five days, between 03/15/2003 and 05/19/2003 were 
used. Another computation was carried out with more thinning of the data in order to 
check the impact of a smaller number of observations. The standard deviations were 
computed for each of the three satellites NOAA15, NOAA16 and NOAA17, and a 
difference was made between sea and land observations. In all cases the computed 
deviations are fairly close to the expected ones. 



Results with true observations 

Estimation of TEMP temperature and wind speed vertical profile of 
standard deviations 
The method was first tried with real observations, the standard deviations of which are 
supposed to be well documented: TEMP observations. Figure 2 shows the prescribed 
profile and the computed profile of standard deviations for wind speed. Figure 3 
shows the same for temperature. 
Those profiles were computed, cumulating the observations of 15 dates separated by 
five days between 03/15/2003 and 05/24//2003. The two figures clearly show that the 
computed deviations remain close to the prescribed ones, which was expected. In this 
case the estimates are realistic. 

Estimation of AMSU A channels standard deviations. 
With the same conventions as for Fig. 1, Fig. 4 shows the standard deviations 
computed for true data from 12 dates between 03/15/2003 and 05/24//2003. Some 
features appear: roughly, all the standard deviations are over estimated by a factor of 
2. It can be seen that, according to this tuning, AMSU –A channel 5 has a larger 
standard deviation for land observations than for sea observations. Satellite NOAA16 
instrument seems to have a larger standard deviation for channel 8 than the other 
satellites. The standard deviations computed with a twice larger thinning interval are 
almost always larger than those computed with the operational thinning. Such a 
difference did not appear in the simulated case. This may be due to spatial correlation 
or maybe inter-channel correlation which are known to lead to underestimating the 
evaluates.  

Conclusions and future directions. 
The first iteration of Desroziers and Ivanov’s algorithm, cumulating the observations 
over several dates, has been shown to be able to produce reliable estimates in a 
simulated case. The estimates seem reasonable in the case of true TEMP messages, its 
application to ATOVS radiances show several possibly useful and unexpected 
features but the role of possible correlations has to be clarified. 
Future work will extend to the tuning of all observation types and a level by level 
tuning of B in order to evaluate the impact of this tuning on the analysis and on the 
forecasts. 
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 Figure. 1: Standard deviations of 

AMSU A channels obtained by the 
method in a simulated case. The 
black bars are computed with the 
operational thinning between obs. 
and the red bars with a twice larger 
thinning interval. A different 
deviation is computed for each 
satellite , a difference is also made 
between sea and land observations. 
The grey bars with dots show the 
simulated « true » standard 
deviations.  
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Figure 3: As in
Fig. 2 but for

TEMP
temperature error

standard
deviation profile.

Figure 2: Vertical 
profiles of TEMP 
wind speed error 
standard deviations. 
The black line with 
red circle markers is 
the prescribed 
profile, the dashed 
line with “+” 
markers is the 
computed profile
Figure 4: Standard deviations of 
AMSU A channels obtained by 
the method in a true case. 
Plotting conventions are the 
same as in Fig. 1 but this time 
the grey bars with black dots are 
the prescribed standard 
deviations 
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