Plotting Realistic Instantaneous Field of View Ellipsoids on an Arbitrary Earth Projection
 Thomas J. Kleespies

NOAA/NESDIS
Camp Springs, Maryland USA
Thomas.J.Kleespies@noaa.gov

A method is presented to calculate the earth coordinates of an elliptical shape that approximates the intersection of a spherical field of view with the earth's surface.

Uses:

Co-locating high resolution imagers with low resolution sounders for cloud detection.
Determining surface types for infrared and microwave emissivity computation.
etc

Assumptions:

-The earth is a sphere

- Neglect topography
-The field of view can be represented by an ellipse
-The satellite attitude is nominal
-The satellite height and sub point are known
-The centers of the individual fields of view are known

Next:

A lot of plane and spherical trigonometry is not presented here.

Result:

For each field of view a polygon of arbitrary size is constructed in earth coordinates that approximates the field of view.
This polygon can be passed to a drawing program (such as IDL of PGPLOT) for plotting purposes, or used in a geographical data base.

Simulated GOES microwave sounder @ 100West with 40km nadir FOV

To Do:

1) Fix Kludge* around poles which correctly rotates ellipses in the opposite hemisphere of the sub point
2) Fix a problem with ellipse when a pole is within the fov
3) Draw the fov as realistic ovoid
4) Finalize Fortran90 and IDL code
*A kludge (or kluge) is a 'solution' for accomplishing a task, originally a mechanical one and usually an engineering one, which consists of various otherwise
unrelated parts and mechanisms, cobbled together in an untidy or downright messy manner. A kludge is never elegant except ironically, nor, serviceability to the task at hand excepted, is it ever admirable. Despite this, it generally takes a skilled crattsman, someone intimately familiar with the requirements of the desired task, the properties of the raw material at hand, and the uttimate operating environment, to produce a workaround monstrously clunky enough to be
called a kludge. http:/len.wikipedia.org/wiki/Kludge

NOAA-17 AMSU-A and AMSU-B scan pattern in cylindrical coordinates. Coastline is North New Guinea.

NOAA17 HIRS fields of view in polar stereographic projection. Note scan asymmetry.

