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Artificial Neural Networks (ANNs)Artificial Neural Networks (ANNs)
The term ‘artificial neural network’ is more 
historical than descriptive and in fact refers 
to the original inspiration for their 
development [6]. An ANN is a multivariable 
function in continuous space. It is more 
concisely depicted graphically but each 
output can also be written as a function of 
the ANN inputs. 

Changing the free parameters of an ANN 
changes the function it produces. ANN free 
parameters are called biases and weights.

A standard feed forward artificial 
neural network is shown in the figure 
to the left and has 3 layers. The inputs 
biases and weights are labelled. Each 
unit outputs a function of its inputs. 
This function is called the activation 
function.

Selecting values for the biases and 
weights is done to fit the ANN function 
to data. However this is not easily 
done… the standard method is called 
back-propagation.
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Real Data?Real Data?

Test of comprehensive data 1: The convex hull test

The figure shows an 
example for a dataset 
with 2 dimensions 
made of 200 points 
from a normal 
distribution. This is 
separated into subsets a
and b. 87% of subset b 
can be found in the 
convex hull of subset a.

The convex hull of a data set the 
tessellating boundary described 
by the data set.

The data set is first randomly 
split into 2 equally sized 
subsets, a and b. Both these 
parts should represent the same 
function and should be similar. 
The test is to see what fraction 
of subset b lays within the 
convex hull of a..

This test is run 50 times for both the real 
data and the simulated data (LW case). 
The test is done using the 5 dimensions 
of the brightness temperatures.

The Simulated data mean result is 92% 
with a standard deviation of 0.6%, 
The Real data mean result is 37% 
with a standard deviation of 8%.

Test of comprehensive data 2: The closest point test
This is also run 50 times for both the real 
data and the simulated data (LW case). 
The test is done using the 5 dimensions of 
the brightness temperatures. These 
distances will be measured in Kelvin.

The Simulated data mean result is 0.8K with a 
standard deviation of 0.007K, 
The Real data mean result is 7.4K with a 
standard deviation of 1.2K.

Again the data set is 
first randomly split into 
2 equally sized subsets, 
a and b. The test is a 
measure of the mean 
distance for each point 
in subset b to the closest 
point in subset a.

What happens when we use this real data set to What happens when we use this real data set to 
train an ANN?train an ANN?

After the real data set has been split into training, validation and test 
sets, the small amount of training data can be fitted very well by the 
ANN with a RMS error of around 0.015kgm-2. This however is the 
error on the training data and does not consider the validation or test 
sets. It has been demonstrated that it would be very difficult to split 
this data set into subsets that are comprehensive enough to represent 
the same model. When all the data sets are used an the ANN is set to 
the point of best validation we see this is true because the test set error 
is around 0.25kgm-2.

A set of real data has been constructed by co-locating data from 
the NOAA CLASS web site [9] with ground station data from the 
ARM web site [10]. A range of LWPC has been selected from the 
Southern Great Plains stations Central and Hillsboro. In total the 
final data set contains 99 data points. 

However this data set is not comprehensive enough to learn a 
model to represent the mechanism that created it. Some simple 
tests are shown below to demonstrate this.

If a model is trained with 
Training set A, and 
validated with Validation 
set A such that the best 
trained state of the model 
can be selected, then testing 
the model with any other 
part of data C, would be 
equivalent…

Unless, 
a) Data C is not evenly mixed.
b) Mechanisms A and B are NOT the same.

Now consider a mechanism B, which creates 
data B. If mechanisms A and B are in fact the 
same, then data A and data B can be 
considered as parts of a bigger data set, 
data C.

Imagine mechanism 
A is used to create 
the data set, data A
and we want to use 
this data to learn a 
model for 
mechanism A. We 
first split the data 
into Training set A, 
Validation set A and 
Test set A.

The introduction of real data into the study highlights some important points about learning from data... 

Can an ANN 
trained with 
simulated data be 
tested with real 
data? 

Standard back-propagation [2] is the most popular 
method used to select values for ANN free 
parameters. It is done iteratively, calculating the error 
gradients of the data in respect to the free parameters, 
then updates them appropriately. The error gradients 
are calculated starting from the error on the outputs 
and works backwards. Each iteration of all the 
training data is called an epoch. It is a steepest decent 
search for a minima, like a ball rolling down a hill.

BackBack--propagationpropagation

Parameterised activation functionParameterised activation function
The activation function is the building block of the ANN, typically the sigmoid 
or hyperbolic tangent functions are used. 

A parameterised activation function has been developed which can represent a 
high number of possibilities such that can be easily tested and referenced. The 
figures show a selection of configurations. The function is as follows, a and b
control the scaling and are both normally set to 1.
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Artificial neural networks (ANNs) have many variants, which can have very different behaviours. The success 
of ANNs to produce good results for a wide variety of problems when little is known about the search space 
has lead them to become of interest to many scientific disciplines. Ideally if a problem is tested for the first time 
with an ANN methodology then this methodology should be standard. However this may be problematic for a 
number of reasons. It is difficult to know the best configuration of parameters for the learning algorithm. 
Results from individual runs can be irregular. There may be a very large amount of training data making 
training slow. These problems often cause researches to diverge from the standard back propagation method. 

The objective of this study is to test ANN methodology for the problem of cloud liquid water path (LWPC) 
derivation, using the advanced microwave sounding unit B (AMSU-B) microwave brightness temperatures. 
The vertically integrated cloud liquid water, also known as LWPC plays a key role in the study of global 
atmospheric water circulation and the evolution of clouds. The ability to derive LWPC accurately and across 
large areas therefore means better atmospheric models can be built and tested. Simulated AMSU-B and 
LWPC data is fitted using linear, polynomial and standard ANN methods. The ANN method performed the best 
and gave an average RMS error for between 0.06 and 0.02 kgm-2 dependent on the environment. 
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Simulated AMSUSimulated AMSU--B dataB data
Data used to train any methodology that builds a model from data should be 
comprehensive. The data should express the various facets of the problemand its 
complexity, it should also be numerous enough to be split into training, validation and 
test sets [8]. Fortunately using simulated data allows a large and detailed data set to be 
constructed. 

The AMSU-B passive microwave channels 
simulated using ECMWF [11] atmospheric 
profiles and with the RTTOV code. The data is 
split into 4 sets representing different problems 
dependent on the surface type and season, these 
are land-summer (LS), land-winter (LW), 
ocean-summer (OS) and ocean-winter (OW). 
The ECMWF cloud liquid water profiles (clw) 
at 60 atmospheric levels, have been integrated 
to calculate the LWPC,

∫ ⋅= dpclw
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Here the LS simulated brightness 
temperatures are shown against 
cloud liquid water path.
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These results are better than expected, the PROBEN1 data sets are already small and it was expected that most of the data 
was needed to express the problems. The test was to see if a smaller data set could be constructed for an experimental 
phase of work, without sacrificing the behaviour of the ANN and causing a large increase in the test error . Surprisingly 
for two of the problems the test error decreased. Notice also that the glass problems still performed well for such small data 
sets. The larger data sets (building) showed the largest reduction in data and again gave good results.

Benchmark TestingBenchmark Testing
Benchmark testing is done on all the methodology used in 
the study. This is not just to test the functionality and 
implementation of the ANN, but it is also used to test how 
well the extra methodology extends to problems and data 
already documented. Here is an example of benchmark 
testing for the sampling algorithm using PROBEN1 [8] 
benchmark problems. Firstly each of the problems is tested 
using their full data sets. In each case the number of data in 
the reduced sets is shown. The errors shown are the ANN 
errors[8], they are unit less and each represents 10 runs of 
the ANN. The standard deviation is labelled SD. Note that 
the test sets are always the same. 

Sampling training and validation data Sampling training and validation data 
Back-propagation is slow, particularly when there is a large amount of training data. Sampling training and validation data 
sets is done to reduce their size. This can be done because the form of the data is more important than just the quantity. 

Within this study a simple method has been 
implemented to simple data sets. Each dimension of 
the data is split into S parts, for d dimensions, this 
makes Sd subspaces. Various statistical measures 
can then be used to select n points from each of the 
subspaces. The plots give a simple example of this. 
One point is taken at random from each of the 
subspaces considering only 2 dimensions of the 
simulated LS data set. a) shows all 25384 data 
points b) S=200 and so 8457 points are selected, c) 
S=100, selecting 3755 points, d) S=25 selecting 398 
points. 

ANN ResultsANN Results
The ANN architecture used was 5-20-5-1 for all networks, this notation references the number of units in each layer from input to output.  The hyperbolic 
tangent activation function is used for all output units, and also for the hidden units in the LW case. The hidden units in the LS, OS and OW cases use the 
parameterised activation function with v1=0.5, v2=-0.5 and u=3. A linear fit of the results is also shown . 
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Method comparison with least squares solutionMethod comparison with least squares solution
The least squares fit solution is done using matrix methods. Firstly 
only AMSU-B channels 1 and 2 are used because they show the 
most correlation with the LWPC. Then secondly all 5 channels are 
used. 

Both linear and quadratic modelsare tested giving 4 functions as 
shown below. The 5 AMSU-B channels are labelled C1 to C5 and 
the free parameters are the a coefficients. The quadratic forms are 
written with b coefficients because they are inside the squared 
term. It is however, the a coefficients that are fitted, these are the 
coefficients after the expansion. Notice that the least squares fit is 
linear in the coefficients but not necessarily in the terms. 
The functions are,

And the coefficients are calculated,

The matrix K is constructed with the function terms as columns 
and data as rows. The following table shows these results in kgm-2. 
Using all 5 channels with the quadratic model did the best. These  
results are plotted for all cases of surface and season. 

The ANN performs better than the least squares fit. The least squares solutions are still very good, but notice the ends of the fit; 
where the LWPC is very low the fit is much more inaccurate and produces more negative outputs than for the ANN. Equivalently 
where the LWPC is high the fit tends to produce underestimates. Two very positive points about these results concerning the least 
squares fit, are that the ANN has many more free parameters, and thatthe matrix fitting method is quick. Therefore a possible 
extension would be to use an intelligent methodology (discreet optimisation variant), to select/construct the terms for the fit.


