Standard back-propagation artificial neural networks for
cloud liquid water path retrieval from AMSU-B data -~
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Artificial neural networks (ANNs) have many variants, which can have very different behaviours. The success Simulated AMSU-B data
of ANNs to produce good results for a wide variety of problems when little is known about the search space _ _ - e
has lead them to become of interest to many scientific disciplines. Ideally if a problem is tested for the first time E:;f‘pt’:ﬁgnt;\E‘r’]’eaggt;’s:‘mg'g)?grg;zttﬁg't’:rgﬂﬁg?efsa? fm?nt; A0 i o

with an ANN methodology then this methodology should be standard. However this may be problematic for a Channel 3

complexity, it should also be numerous enough tegi into training, validation and ]

number Of reasons. It |S d|ﬁ|CUIt to knOW the best Conﬁguration Of parametel‘s fOI‘ the |eal’ning algonthm test sets [8] Fortunate|y usmg simulated damnadla |arge and detailed data set to be: 2=
Results from individual runs can be irregular. There may be a very large amount of training data making constructed. S
training slow. These problems often cause researches to diverge from the standard back propagation method. The AMSU-B passive microwave channels ol Lol 10
. . . T simulated using ECMWF [11] atmospheric = SR e, o v A
Thr—; ob_Jectlve_of this study is to te_st ANN methodplogy f_or the problem of cloud Ilquu_zl water path (LWP,) profiles and with the RTTOV code. The datais ™
derivation, using the advanced microwave sounding unit B (AMSU-B) microwave brightness temperatures. split into 4 sets representing different problems : ' COE
The vertically integrated cloud liquid water, also known as LWP., plays a key role in the study of global dependent on the surface type and season, theie B e e
atmospheric water circulation and the evolution of clouds. The ability to derive LWP. accurately and across areland-summer (L S), land-winter (LW), AMSU-B
large areas therefore means better atmospheric models can be built and tested. Simulated AMSU-B and AL - Channel 4
LWP.. data is fitted using li | ial and standard ANN thods. The ANN thod f d the best The ECMWEF cloud liquid water profilesl(v) 20 § e 2t
c data is fitted using linear, polynomial and standar methods. The me (_) performed the bes at 60 atmospheric levels, have been integrated = .. ; " 2 _im
and gave an average RMS error for between 0.06 and 0.02 kgm-2 dependent on the environment. to calculate the LWR e g L=
. . 1 z‘nne again: i é .
L\APC = — ICIW * dp 256
Artificial Neural Networks (ANNS) 9 = . ,
The term ‘artificial neural network’ is more A standard feed forward artifici Bac k-propag ation “ Chv‘vﬁgm
historical than descriptive and in fact refers Iput- neural network is shown in the figure . .
. ; units ; dard back-propagation [2] is the most popular B AMSU-B
to the original inspiration for their to the left and has 3 layers. The inputs
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development [6]An ANN is a multivariable biases and weights are labelled. Each i = E
o : . ; ) . parameters: ne iteratively, calculating eher | © "
function in continuous spacelt is more unit outputs a function of its inputs. c ‘ ‘ ‘ i
: . ; . N . atayin respect to the free paeme ¢ t 2 & JH
concisely depicted graphically but each This function is called thectivation ; . L kgin E
output can also be written as a function of idd function e e i :
the ANN inputs. by Er']itse” ' are calculated startingtom the error on the dtstpu Here the LS simulated brightness ¢
P Selecting values for the biases and  and works backwards. E n of all the tTm%elratL.';es atre Sh%‘:‘m Gl
Changing the free parameters of an ANN W, 4 weights is done to fit the ANN function training data is called an epoch. laisteepest decent O i
changes the function it produces. ANN free i to data. However this is not easily search for a minimalike a ball rolling down a hill. ’ i R ’ ”
parameters are calléxlases andweights. Output done... the standard method is called :
bs units back-pr opagation. network weight

Sampling training and validation data

Back-propagation is slowparticularly when there is a large amount ofireg data. Sampling training and validation data
sets is done to reduce their size. This can be decaus¢he form of the data is more important than justehguantity

Output = f (bs+ws- T (bi+wWi-i1+Ws-i2) +Wes- f (b2+Wz2-i1+ Wa-i2))

Parameterised activation function ~

The activation function is the uilii|
or hyperbolic tangent e

Within this study a simple method has been ( b
implemented to simple data sets. Each dimensio
the data is split int& parts, ford dimensions, this |,
makesS subspaces. Various statistical measures :

block of thANN, typically the sigmoid

A parameterised oy @eelwhich canrepresenta g | can then be used to selegtoints from each of the| ™
h'gﬁ [ 1 id referenced. The subspaces. The plots give a simple example of th ==
figures saandb One point is taken at random from each of the S S

contro subspaces considering only 2 dimensions of the | *

simulated LS data set. a) shows all 25384 data | =
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Methoad comparison with least sg » Solution

Linear Quadratic Quadratic
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The convex hull of a data set the
tessellating boundary described
by the data set.

The figure shows an What happens when we use this real data set to
example for a dataset (rain an ANINZ

with 2 dimensions
made of 200 points

\ from a normal
distribution. This is
'separated into subsets
andb. 87% of subsdb
can be found in the
convex hull of subset.

The data set is first randomly
split into 2 equally sized
subsetsa andb. Both these
parts should represent the sghte
function and should be similal
The test is to see what fraction
of subseb lays within the
convex hull ofa..



