

Validation of Total Ozone Analysis from SBUV/2 and NOAA TOVS (TOAST)

S. Kondragunta^{1*}, Q. Zhao², D. McNamara^{1#}, A. Neuendorffer¹, and L. E. Flynn¹ ¹ NOAA/NESDIS, Camp Springs, Maryland

²STG, Inc., Rockville, Maryland
 * Email contact for scientific questions: Shobha.Kondragunta@noaa.gov
 # Email contact for product questions: Donna.McNamara@noaa.gov

Introduction

NOAA/NESDIS has developed an improved TOVS total ozone product that combines TOVS upper tropospheric and lower stratospheric ozone (LOZ) and SBUV/2 middle-to-upper stratospheric ozone (UOZ). The algorithm for the new product has the following steps:

- (1)Create a gridded 1° X 1° SBUV/2 UOZ (32 mb and above) analysis fields from SBUV/2 soundings,
- (2)Create a gridded 1° X 1° TOVS LOZ (surface to 32 mb) analysis fields from TOVS soundings,

(3)Combine UOZ and LOZ fields to create a new total ozone map product.

This map product has been running at NOAA/NESDIS in a pre-operational mode since 2001 and is available to users via the internet at <u>http://140.90.208.66/</u>. The TOAST product is expected to become operational in late 2005.

Purpose of this Study

TOVS algorithm uses a latitude dependent but seasonally independent UOZ climatology. This assumption leads to large errors in TOVS total ozone when day-to-day ozone variations deviate from climatology. In the TOAST algorithm, we replaced TOVS UOZ climatology with measurements from SBUV/2. In this study, we compare the TOAST total ozone product with ground-based observations to determine that its accuracy is better than TOVS.

Data

Two years of satellite (NOAA-16 TOVS and SBUV/2) and ground observations (Dobson and ozonesonde network).

Analysis

Time series of monthly mean offsets between: TOAST vs Dobson – *TOAST validation* SBUV/2 UOZ vs POAM UOZ – *SBUV/2 UOZ validation* TOVS LOZ vs ozonesonde LOZ – *TOVS LOZ validation*

Figure 1: TOAST Algorithm Schematic

Figure 3: Validation of NOAA-16 SBUV/2 UOZ

Figure 3: Time series of monthly ((TOVS/SBUV2) – POAM) integrated profile ozone (UOZ) (%) in the Northern Hemisphere (top panel) and in the Southern Hemisphere (bottom panel). Matchups were obtained for coincident measurements within 4° latitude and 12° longitude. Climatological TOVS UOZs have large offsets compared to POAM observations (red curve). UOZs from SBUV/2 measurements and analysis have smaller offsets (green and blue curves). In the SH, for SBUV/2 measurements comparisons, gaps in matchups are due to differences in coverage between POAM and SBUV/2; POAM latitude coverage is different between SH and NH. Vertical bars are 1-sigma standard deviations.

Figure 4: Time series of monthly (TOVS analysis – ozonesonde) LOZ (%). For matchups, a 4-point linear interpolation from the 1° x 1° degree daily analysis fields were made to the observation spots. Offsets between TOVS and ozonesonde LOZs are between 10 and 20%, with offsets being larger at higher southern latitudes. Vertical bars are 1-sigma standard deviations.

Conclusions

Accuracy of TOAST total ozone is at the 2% level. Amplitude of the annual cycle in the offsets between TOAST
vs Dobson is much less compared to TOVS vs Dobson.

• Replacing TOVS UOZ climatology with SBUV/2 UOZ retrievals in the TOAST algorithm improves total ozone retrievals. Comparisons of SBUV/2 UOZ retrievals/analysis with coincident POAM observations show that they agree within 10%. TOVS climatological UOZ values on the other hand have offsets as large as 60%.

• Comparisons of TOVS LOZ values with ozonesonde data show that they agree within 20% except at the southern high latitudes for which the discrepancies are larger (~ 40%). This is possibly due to uncertainties in TOVS LOZ retrievals over cold Antarcitc surface.

Acknowledgements

The POAM data were obtained from NRL via anonymous ftp site at poamb.nrl.navy.mil. Dobson and ozonesonde data were obtained from WOUDC at http://woudc.org/

Figure 2: Validation of NOAA-16 TOAST Total Ozone Product

Figure 2: Time series of monthly mean (Analysis – Dobson) total ozone (%). For matchups, a 4-point linear interpolation from 1° x 1° degree daily analysis fields were made to observation spots. TOAST shows an improvement over TOVS and its accuracy is at the 2% level. Vertical bars are 1-sigma standard deviations.