
Two fast forward radiati transfer models dedicated to the AIRS instrument and comparison to AIRS observations.

Sylvain Heilliette, Noëlle Scott, Alain Chédin, Cyril Crevoisier and Raymond Armante

Laboratoire de Météorologie Dynamique, CNRS, IPSL, Ecole Polytechnique, France

Introduction

With its 2378 infrared channels with a spectral resolution ranging from 0.35 cm⁻¹ to 1.5 cm⁻¹, the high spectral resolution Advanced Infrared Sounder (AIRS), recently launched on board of EOS-Aqua, opens promising perspectives for remote sensing applications as the improvement of temperature and water vapor profile retrieval or retrieval of greenhouse gases (CO_2 , N_2O , CO and CH_4 for example). In order to reduce the amount of data and calculation time needed by these applications, a subset of 324 channels has been extracted and is distributed by the NESDIS.

The key for all these applications is the availability of a fast forward radiative transfer model, much faster than the line by line models. Two such models are presented here.

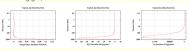
Thermodynamic Initial Guess Retrieval (TIGR) climatological database :

Automatized Atmospheric Absorption Atlas (4A)

fast line by line model

based upon the GEISA spectroscopic database

Radiative database :


2311 thermodynamic profiles (T, H₂O,O₃)

Jacobian definition

The Jacobian function is simply the first partial derivative $\left(\frac{\partial T_{g}}{\partial a}\right)$ of the brightness temperature $T_{\rm B}$ calculated by the forward radiative transfer model with respect to one input thermodynamical parameter q like temperature, surface emissivity, mixing ratio of an absorbing gas, etc ..

Transmission functions Temperature Jacobian

Mixing ratio (H₂O, CO₂, O₃, N₂O, CH₄ and CO) Jacobians

Emissivity Jacobian

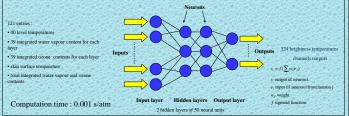
AIRS brightness temperatures

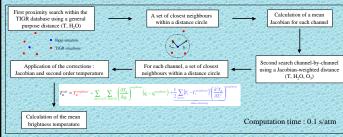
Jacobian model

• Multilayer Perceptron (two hidden layers)

Neuronal model

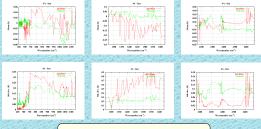
· Supervised Learning on the TIGR database


Inputs :temperature and mixing ratio (H2O, O3) profiles (I network for each viewing angle)

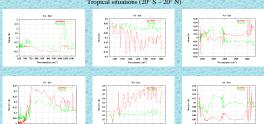

Outputs: 324 AIRS channels brightness temperatures

- · Pattern recognition within the TIGR thermodynamical database
- ullet Linearization of the radiative transer equation ullet use of Jacobians

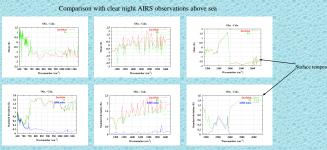
Inputs: emissivity, viewing angle, temperature and mixing ratio (H2O, O3, CO2, CH4, N2O, CO) profiles Outputs: - 324 AIRS channels brightness temperatures


- Jacobian functions

Statistics on the TIGR database


Comparison with the line-by-line model 4A

Statistics on an independent database


Comparison with the line-by-line model 4A ECMWF analyses 19 September, 2003

Tropical situations (20° S - 20° N)

Comparison with observations using **ECMWF** analyses

19 September, 2003

Conclusion

Jacobian Model

- Computation of Jacobian functions available
- •Relatively fast
- •No learning process
- ·Good treatment of the CO2 channels
- •Poor treatment of the H2O channels (would require high order corrections or better sampling of the database)
- ·Able to take into account greenhouse gases profiles

- Neuronal Model
- •Computation of Jacobian functions still difficult
- ·Extremely fast
- Long learning process (50000 iterations at least)
- ·Appropriate treatment of the CO2 channels
- •Good treatment of the H2O channels
- ·Unable to take into account greenhouse gases profiles